期刊文献+

离散最值问题及其解法

下载PDF
导出
摘要 离散最值问题指自变量为非连续性(如自变量在整数或自然数范围内取值)的条件最值问题。这类问题形式活泼、题型新颖、运用基础知识较少、蕴含着丰富的思想方法。本文拟结合有关数学竞赛试题,探讨解决这类问题的基本方法。 1.主元法 离散最值问题往往涉及几个变量,其中有一个变量条件最强,思考时紧紧抓住这个变量,将其它变量用它代换,这样,问题就转化为只含有一个元的表达式,从而易于求解,我们称这种方法为“主元法”。 例1 若a、b、c、d是整数,b是正整数且满足a+b=c,b+c=d,c+d=a,那么a+b+c+d的最大值是( ) (A)-1;(B)-5;(C)0;(D)1。 (1991年全国初中数学联赛试题) 分析:a、b、c、d是整数,b是正整数,b的条件最强,以b为主元,将a、c、d分别用b表示。
作者 江兴代
出处 《中学数学教学》 1994年第2期26-27,共2页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部