摘要
The structures and the vertical profiles of turbulent variance and covariance of the stably stratified boundary layer (SBL) are simulated with a second-order closure turbulence model. The results confirm that the vertical profiles of the dimensionless turbulence variance and covariance can be well represented by the form F = A(1 - Z / h)x. Here h is the height of SBL. and both exponent a and coefficient A are the functions of terrain, baroclinicity, radiation cooling and the state of temporal development of SBL. Comparing with Minnesota and Cabauw experiment data, we have analysed the value of a and expounded the main reasons that great difference in a exists among different literatures.
The structures and the vertical profiles of turbulent variance and covariance of the stably stratified boundary layer (SBL) are simulated with a second-order closure turbulence model. The results confirm that the vertical profiles of the dimensionless turbulence variance and covariance can be well represented by the form F = A(1 - Z / h)x. Here h is the height of SBL. and both exponent a and coefficient A are the functions of terrain, baroclinicity, radiation cooling and the state of temporal development of SBL. Comparing with Minnesota and Cabauw experiment data, we have analysed the value of a and expounded the main reasons that great difference in a exists among different literatures.