期刊文献+

A NOTE ON THE SPECTRUM OF NEUTRON TRANSPORT OPERATOR IN A SLAB WITH GENERALIZED BOUNDARY CONDITIONS

A NOTE ON THE SPECTRUM OF NEUTRON TRANSPORT OPERATOR IN A SLAB WITH GENERALIZED BOUNDARY CONDITIONS
原文传递
导出
摘要 The spectrum of neutron transport operator A in an arbitrary non-homogeneous slab geometry is discussed in consideration of anisotropic scatteringand fission.Under the assumptions that the boundary reflection coefficient func-tion α(v,μ),γ(v,μ)and the scattering-fission kernel k(x,v,v′,μ,μ′)are boundedmeasurable,and the total collision frequency v∑(x,v)is square integrable,it isshown that A has at most finite spectrum points in any strip{λ=β+i(?)|β<sub>1</sub>(?)β(?)β<sub>2</sub>},where β<sub>2</sub>】β<sub>1</sub>】-λ<sup>*</sup>,with λ<sup>*</sup> the essential infimum of v∑(x,v).Fi-nally,the asymptotic expansion of the solution for the time-dependent equation(dN)/(dt)=AN,N(0)=N<sub>0</sub> is given as a corollary. The spectrum of neutron transport operator A in an arbitrary non-homogeneous slab geometry is discussed in consideration of anisotropic scatteringand fission.Under the assumptions that the boundary reflection coefficient func-tion α(v,μ),γ(v,μ)and the scattering-fission kernel k(x,v,v′,μ,μ′)are boundedmeasurable,and the total collision frequency v∑(x,v)is square integrable,it isshown that A has at most finite spectrum points in any strip{λ=β+i(?)|β_1(?)β(?)β_2},where β_2>β_1>-λ~*,with λ~* the essential infimum of v∑(x,v).Fi-nally,the asymptotic expansion of the solution for the time-dependent equation(dN)/(dt)=AN,N(0)=N_0 is given as a corollary.
出处 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1992年第2期97-107,共11页
基金 Project supported by the National Natural Science Foundation of China
关键词 Neutron transport OPERATOR SLAB geometry generalized boundary conditions SPECTRUM ASYMPTOTIC expansion Neutron transport operator slab geometry generalized boundary conditions spectrum asymptotic expansion
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部