摘要
本文在紧Lie群上原子Hardy空间H^p(G)(0<P<1)中,对核为s_R^(δ…δ_m,a_1…a_m)=sum from λ∈A(1-|λ+ρ|^(a_1)/R^(a_1))_+~δ…(1-|λ+ρ|~a_m/R^a_m)_+~δ~md_λx_λ的多重广义Bochner-Riesz平均算子,在临界价时得到了极大算子的弱型估计和算子的极大强平均有界性。
Let 0<P<1, G be compact Lie groups. On atomic Hardy spaces Hp (G) , for the multiple generalized Bochner-Riesz mean operatorsthe kernels of which are ,at the case of the critical index, we obtainweak-type estimates for the maximal operators and the maximal strong mean bounded ness for the operators.
出处
《安庆师范学院学报(自然科学版)》
1992年第2期20-27,共8页
Journal of Anqing Teachers College(Natural Science Edition)
基金
国家自然科学基金