摘要
利用 Krall 公式,讨论了任—2n 阶微分型 L(y)乘以乘子 f(x)后,f(x)L(y)是否构成自共轭微分型的问题,并给出了乘子 f(x)的求法。
The paper applies Krall formula to discuss the question about any differential expression of order 2n L(y) by multiplying it with multiplicator f(x) and to see if f(x)L(y) can be made formully self- adjoint diffential expression.And it gives a method which looks for multiplicator f(x).
出处
《哈尔滨商业大学学报(自然科学版)》
CAS
1992年第2期60-64,共5页
Journal of Harbin University of Commerce:Natural Sciences Edition