摘要
利用Schaudcr不动点定理,证明了二阶非线性泛函微分方程x″(t)+ax′(t)+g(t,x(t-c))=p(τ)存在2π周期解。
It was considered that existence of periodic Solution for A Second- order nonlicar functional differential cfuation x"(t)+ax'(t)+g(t,x(t-τ))=p(t). By using Schauder's fiexed point theorem,the conclusion that the equation have a 2π-periodic Solution was obtained.
出处
《广西大学学报(自然科学版)》
CAS
CSCD
1992年第4期75-78,共4页
Journal of Guangxi University(Natural Science Edition)