期刊文献+

人工神经网络及在线电压无功静态安全状态分类

ANN AND ON-LINE CLASSIFICATION OF VOLTAGE/REACTIVE POWER STATIC SECURITY STATES
下载PDF
导出
摘要 本文简要说明了几种在电力系统领域较有应用前途的人工神经网络(ANN)的应用特点。应用Kohonen自组织影射ANN模型对电压无功静态安全分类进行了研究,结果表明Kohonen模型的概括能力不仅能对在训练集中包括的状态,而且能够容许对在训练集中未包括的状态进行正确分类。经系统测试,结果证明本方法可行,适用于在线应用。 安全分析,Kohonen人工神经网络。 The appling Features of several artificial neural nets (ANN) which are of good prospects in power systems are concisely explained in this paper. Using Kohonen self-organizing feature map, thc classification of voltage/reactive power static security states is studied, and the results demonstrated that the gencralization capability of the Kohonen network permits the correct classification of power system states whether are included in the training sets or not. By systematic test, the results show the effectiveness ofthe proposed method which suits to the on-line application.
作者 刘玉田 邹森
机构地区 山东工业大学
出处 《电力系统及其自动化学报》 CSCD 1992年第1期23-27,48,共6页 Proceedings of the CSU-EPSA
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部