摘要
In the present paper reductions of the finite layer mathod once studied in detail by the authors for the elastodvnamics of transverse isotropic bodies are given to several special cases. Two-dimensional problems, axisymmetric problems and static problems are discussed, respectively, and this finite layer method is also generalized to the problems in which materials possess viscous properties. Two numerical examples have been presented for the axisymmetric case. From these two examples it can be concluded that the finite layer method can be used to analyse semi-infinite layered soils and to deal with the problem of the interaction between soils and structures.
In the present paper reductions of the finite layer mathod once studied in detail by the authors for the elastodvnamics of transverse isotropic bodies are given to several special cases. Two-dimensional problems, axisymmetric problems and static problems are discussed, respectively, and this finite layer method is also generalized to the problems in which materials possess viscous properties. Two numerical examples have been presented for the axisymmetric case. From these two examples it can be concluded that the finite layer method can be used to analyse semi-infinite layered soils and to deal with the problem of the interaction between soils and structures.