期刊文献+

The Characteristics and Mechanism of Island-Arc Volcanism on the Central and Southern Fildes Peninsula, King George Island, Antarctica

The Characteristics and Mechanism of Island-Arc Volcanism on the Central and Southern Fildes Peninsula, King George Island, Antarctica
下载PDF
导出
摘要 The volcanic rock series on the Fildes Peninsula is the product of the later subduction of the Pacific platebeneath the Antarctic plate. It consists mainly of basalt, basaltic andesite and andesite with minor dacite. Itsisotopic ages range from 64.6±1 to 43±2 Ma, belonging to Palaeocene to Eocene. Volcanism in the area maybe divided into two phases. The contents of major oxides, rare earth elements (REE) and trace elements in vol-canic rocks formed in different phases show regular changes, which are mainly related to the rock associationsof these phases. Isotope geochemical studies indicate that the primitive magma in the area originating by par-tial melting in the upper mantle underwent fractional crystallization and ascended to the high-level (shallow)magma chamber. Before eruption the primitive basalt-andesitic magma was subjected to differentiation in thehigh-level magma chamber, forming zones of derivative magmas of different compositions. In various phasesmagma-conducting faults experienced periodic extension and cut through various derivative magma zones indifferent parts of the peninsula, leading to the eruption of magmas of different compositions on the surface andthe formation of volcanic rock associations of corresponding compositions. The volcanic rock series on the Fildes Peninsula is the product of the later subduction of the Pacific platebeneath the Antarctic plate. It consists mainly of basalt, basaltic andesite and andesite with minor dacite. Itsisotopic ages range from 64.6±1 to 43±2 Ma, belonging to Palaeocene to Eocene. Volcanism in the area maybe divided into two phases. The contents of major oxides, rare earth elements (REE) and trace elements in vol-canic rocks formed in different phases show regular changes, which are mainly related to the rock associationsof these phases. Isotope geochemical studies indicate that the primitive magma in the area originating by par-tial melting in the upper mantle underwent fractional crystallization and ascended to the high-level (shallow)magma chamber. Before eruption the primitive basalt-andesitic magma was subjected to differentiation in thehigh-level magma chamber, forming zones of derivative magmas of different compositions. In various phasesmagma-conducting faults experienced periodic extension and cut through various derivative magma zones indifferent parts of the peninsula, leading to the eruption of magmas of different compositions on the surface andthe formation of volcanic rock associations of corresponding compositions.
出处 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1992年第1期39-57,共19页 地质学报(英文版)
基金 This research was supported by the State Antarctic Committee of China,the National Natural Science Foundation of China(Project 4870113),the Geological Foundation and the Chinese Academy of Geo1ogical Sciences
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部