期刊文献+

EXISTENCE OF RADIAL LIMITS OF HARMONIC FUNCTIONS IN BANACH SPACES

EXISTENCE OF RADIAL LIMITS OF HARMONIC FUNCTIONS IN BANACH SPACES
原文传递
导出
摘要 The following result is established:let X be a Banach space without the Radon-Nikodym property,there exists a uniformly bounded harmonic function f defined onthe open unit disk of C with values in X,such that for almost allθ∈[0,2π],(?)f(re<sup>iθ</sup>)does not exist. The following result is established: let X be a Banach space without the Radon-Nikodym property, there exists a uniformly bounded harmonic function f defined on the open unit disk of C with values in X, such that for almost all theta is-an-element-of [0, 2-pi], lim(r --> 1) f(re(i-theta)) does not exist.
作者 步尚全
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1992年第1期110-117,共8页 数学年刊(B辑英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部