期刊文献+

ORDERS OF THE MEAN APPROXIMATION BY THE INTERPOLATION OF (0-q′-q) TYPE AT DISTURBED CHEBYSHEV NODES

ORDERS OF THE MEAN APPROXIMATION BY THE INTERPOLATION OF (0-q′-q) TYPE AT DISTURBED CHEBYSHEV NODES
原文传递
导出
摘要 Let X<sub>n</sub>={x<sub>nk</sub>}<sub>k</sub><sup>n</sup>=1 be a set of real numbers satisfying -1【x<sub>nn</sub>【…【x<sub>n1</sub>【1, q’, q: 0≤q’≤q be two integers. For a non-negative integer r, we denote by C<sub>[</sub>-1,1]<sup>r</sup> the set of all the rth continuously differentiable real-valued functions on [-1, 1], and by ∏<sub>r</sub> the set of the polynomials of degree at most r. For a given f ∈C<sub>[</sub>-1,1]<sup>q’</sup>, we call the only S<sub>N</sub>(f, x)∈∏<sub>N</sub> (N = (q+1) n-1)
出处 《Chinese Science Bulletin》 SCIE EI CAS 1992年第20期1673-1678,共6页
关键词 disturbed Chebyshev nodes INTERPOLATION of (0-q′-q) TYPE APPROXIMATION order Marcinkiewicz-Zygmund TYPE inequality DISTURBED CHEBYSHEV NODES INTERPOLATION OF (0-Q'-Q) TYPE APPROXIMATION ORDER MARCINKIEWICZ-ZYGMUND TYPE INEQUALITY
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部