期刊文献+

PROOF OF ONE CONJECTURE OF R.S.SINGH:DISCRETE CASE

PROOF OF ONE CONJECTURE OF R.S.SINGH:DISCRETE CASE
原文传递
导出
摘要 Convergence rates of empirical Bayes(EB) estimators w-r-t the squared efror loss are con sidered in discrete exponential families. It is shown that a rate O(n^(-1)) is not possible for any EB estimator,even though the parameter space is bounded. Namely, it is proved that the discrete similar of one conjecture of Singh (for Lebesgue-exponential families) is correct. Convergence rates of empirical Bayes(EB) estimators w-r-t the squared efror loss are con sidered in discrete exponential families. It is shown that a rate O(n<sup>-1</sup>) is not possible for any EB estimator,even though the parameter space is bounded. Namely, it is proved that the discrete similar of one conjecture of Singh (for Lebesgue-exponential families) is correct.
作者 陶波
出处 《Science China Mathematics》 SCIE 1992年第12期1409-1424,共16页 中国科学:数学(英文版)
关键词 empirical BAYES estimation squared error loss CONVERGENCE rates DISCRETE EXPONENTIAL families Singh conjecture. empirical Bayes estimation, squared error loss, convergence rates, discrete exponential families, Singh conjecture.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部