期刊文献+

ON COMPACT SUBMANIFOLDS IN THE SPHERE 被引量:1

ON COMPACT SUBMANIFOLDS IN THE SPHERE
原文传递
导出
摘要 Let M<sup>n</sup> be an n-dimensional compact submanifold in a unit sphere S<sup>n+p</sup>, S be the square of the length of the second fundamental form of M<sup>n</sup>. S. T. Yau proved that if the mean curvature vector is parallel and S≤n/(n<sup>1/2</sup>+3-1/(p-1)) everywhere on M<sup>n</sup> then M<sup>n</sup> lies in a totally geodesic S<sup>n+1</sup>. The constant has been improved to max,
出处 《Chinese Science Bulletin》 SCIE EI CAS 1992年第5期437-438,共2页
基金 Project supported partially by the National Natural Science Foundation of China
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部