摘要
本文提出了分析强非线性拟保守系统+g(x)=μf(x,) 0<μ≤1周期解的一种方法,它是 Lindstedt—Poincaré方法的推广,用此法可以确定极限环的振幅和周期。作为实例,确定了修正的 van der Pol 振子的极限环振幅;研究了立方强非线性保守系统的 Duffing 方程,并给出了一阶近似周期解。
A method is presented for analysing periodic solutions of the
strongly nonlinear quasi-conservative system
+g(x)=μf(x,) 0<μ≤1
It is an extension of the method of Lindstedt-Poincare.Using
this method,the amplitudes and periods of the limit cycles of
the above system can be determined.As examples,the amplitude
of the limit cycle of modified van der Pol equation and a first
approximation of thc periodic solution of the strongly nonlinear
Duffing equation are investigated.
出处
《西南交通大学学报》
EI
CSCD
北大核心
1992年第5期18-26,共9页
Journal of Southwest Jiaotong University
关键词
非线性振动
周期解
椭圆函数
nonlinear oscillation
periodic solution
elliptic function