期刊文献+

3-PERIODIC ORBIT IMPLYING 683172687698650885-PERIODIC ORBITS——INFIMUMS OF NUMBERS OF PERIODIC ORBITS IN CONTINUOUS FUNCTIONS

3-PERIODIC ORBIT IMPLYING 683172687698650885-PERIODIC ORBITS——INFIMUMS OF NUMBERS OF PERIODIC ORBITS IN CONTINUOUS FUNCTIONS
原文传递
导出
摘要 For any continuous function f on the interval I=[0, 1] and any m, n≥1, let N(n, f)denote the number of n-periodic orbits in f. Put N(n, m)=min{N(n, f):f is a continuousfunction on I, and N(m, f)≥1}. The famous Sarkovskii’s theorem can be stated as follows:If n?m, then N(n,m)≥1. In this paper, we further obtain analytic expressions of the precisevalue of N(n, m) for all positive integers m and n, which are convenient for computing. For any continuous function f on the interval I=[0, 1] and any m, n≥1, let N(n, f)denote the number of n-periodic orbits in f. Put N(n, m)=min{N(n, f):f is a continuousfunction on I, and N(m, f)≥1}. The famous Sarkovskii's theorem can be stated as follows:If n?m, then N(n,m)≥1. In this paper, we further obtain analytic expressions of the precisevalue of N(n, m) for all positive integers m and n, which are convenient for computing.
作者 麦结华
出处 《Science China Mathematics》 SCIE 1991年第10期1194-1204,共11页 中国科学:数学(英文版)
基金 Project supported by the National Natural Science Foundation of China.
关键词 continuous function PERIODIC ORBIT Sarkovskii’s THEOREM UNIMODAL orbit. continuous function periodic orbit Sarkovskii's theorem unimodal orbit.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部