期刊文献+

SOME ARGUMENTS FOR RECOVERING THE FINITE ELEMENT~*

SOME ARGUMENTS FOR RECOVERING THE FINITE ELEMENT~*
下载PDF
导出
摘要 The dual argument is well known for recoving the optimal L2-error of the finite element method in elliptic context. This argument, however, will lose efficacy in hyperbolic case. An expansion argument and an approximation argument are presented in this paper to recover the optimal L2-error of finite element methods for hyperbolic problems. In particular, a second order error estimate in L2-norm for the standard linear finite element method of hyperbolic problems is obtained if the exact solution is smooth and the finite element mesh is almost uniform, and some superconvergence estimates are also established for less smooth solution. The dual argument is well known for recoving the optimal L2-error of the finite element method in elliptic context. This argument, however, will lose efficacy in hyperbolic case. An expansion argument and an approximation argument are presented in this paper to recover the optimal L2-error of finite element methods for hyperbolic problems. In particular, a second order error estimate in L2-norm for the standard linear finite element method of hyperbolic problems is obtained if the exact solution is smooth and the finite element mesh is almost uniform, and some superconvergence estimates are also established for less smooth solution.
作者 林群 周爱辉
出处 《Acta Mathematica Scientia》 SCIE CSCD 1991年第3期290-297,共8页 数学物理学报(B辑英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部