摘要
The mass migration velocity(absolute velocitv) of component i in a multicomponent flow is equal to the convection velocity (frame velocity) plus the diffusion velocity (relative velocity). The diffusion velocity as well as the corresponding diffusion coefficient depends on how the convection velocity is adopted.In turbulent flow, the mass migration velocity of component i is( muss-weighted time average velocity). The diffusion velocity consists of turbulent diffusion velocity and molecular diffusion velocity is the simple lime average velocity of component i and a is a certain convection velocity). So, the part of turbulent diffusion velocity is independent of what convection velocity is taken.In the mdss conservation equation for component i, the expression for the diffusion term on its right-hand side will change when the convection velocity on its left-hand side changes. In turbulent flow, there could be no diffusion terms, or a turbulent diffusion term only or both the turbulent and molecular diffusion terms when or any velocity other than these two is taken as the convection velocity. The case, in which there could he molecular diffusion only without turbulent diffusion, occurs in laminar flow. The molecular diffusion term always depends on the adoption of convection velocitv.In two-phase flow, the value of the molecular diffusion term is often near or even exceeds that of the turbulent diffusion term, which is quite different from the case in gas mixture flow.
The mass migration velocity(absolute velocitv) of component i in a multicomponent flow is equal to the convection velocity (frame velocity) plus the diffusion velocity (relative velocity). The diffusion velocity as well as the corresponding diffusion coefficient depends on how the convection velocity is adopted.In turbulent flow, the mass migration velocity of component i is( muss-weighted time average velocity). The diffusion velocity consists of turbulent diffusion velocity and molecular diffusion velocity is the simple lime average velocity of component i and a is a certain convection velocity). So, the part of turbulent diffusion velocity is independent of what convection velocity is taken.In the mdss conservation equation for component i, the expression for the diffusion term on its right-hand side will change when the convection velocity on its left-hand side changes. In turbulent flow, there could be no diffusion terms, or a turbulent diffusion term only or both the turbulent and molecular diffusion terms when or any velocity other than these two is taken as the convection velocity. The case, in which there could he molecular diffusion only without turbulent diffusion, occurs in laminar flow. The molecular diffusion term always depends on the adoption of convection velocitv.In two-phase flow, the value of the molecular diffusion term is often near or even exceeds that of the turbulent diffusion term, which is quite different from the case in gas mixture flow.
基金
Project supported by the National Natural Science Foundation of China