期刊文献+

A trial of using the cluster analysis to classify the ship noises and EEG (electroencephalogram)

A trial of using the cluster analysis to classify the ship noises and EEG (electroencephalogram)
原文传递
导出
摘要 Cluster analysis is a method often used in pattern recognition. With the aid of the signal processing and the learning of the computer, disfferent samples can be classifeid and recognized in a dimension reduction space of the characteristics because of the differences of their character -istics. To realize dimension reduction transformation, a nonlinear mapping method was discussed in this paper. To prove that the cluster analysis is suitable for quite different fields of samples, in this paper some ship noises and some EEG as the samples belong to two different fields are classified and shown. And it is worthy to point out that an adaptive step size expression of adaptive iteration deduced here will also be effective if it is applied to speed adaptive algorithm convergence of general signal processing. Cluster analysis is a method often used in pattern recognition. With the aid of the signal processing and the learning of the computer, disfferent samples can be classifeid and recognized in a dimension reduction space of the characteristics because of the differences of their character -istics. To realize dimension reduction transformation, a nonlinear mapping method was discussed in this paper. To prove that the cluster analysis is suitable for quite different fields of samples, in this paper some ship noises and some EEG as the samples belong to two different fields are classified and shown. And it is worthy to point out that an adaptive step size expression of adaptive iteration deduced here will also be effective if it is applied to speed adaptive algorithm convergence of general signal processing.
出处 《Chinese Journal of Acoustics》 1991年第1期37-46,共10页 声学学报(英文版)
基金 The project supported by National Natural Science Foundation of China
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部