摘要
一.勿盲目搬用实数集中的公式或结论 (一) 在复数集中|a|=m,a≠±m 例1.已知|ab|+1=|a|+|b|,求复数a,b。学生常错解为:由|ab|+1=|a|+|b|可知(|a|-1))(|b|-1)。故|a|=1或|b|=1,∴a=±1或b=±1。说明:|a|=1,a=±1只在实数范围内成立。当a为复数时,适合|a|=1的数应该是复平面上的单位圆周上的一切点对应的复数。±1只是其中的两个,显然缩小了解集,故至误。一般地,|a|=m(m】0),复数a应是复平面上的以原点为圆心,以m为半径的圆周上的一切点对应的复数,不是在实数范围内成立的a=±m作为它的答案。