期刊文献+

ENUMERATION RESULTS FOR THE CODEWORDS HAVING NO INNER PERIODS IN REED-SOLOMON CODES

ENUMERATION RESULTS FOR THE CODEWORDS HAVING NO INNER PERIODS IN REED-SOLOMON CODES
原文传递
导出
摘要 Let x=(x<sub>0</sub>, …, x<sub>n-1</sub>) be a sequence in the finite field GF(q) with length n, S<sup>i</sup>, x is the i-cyclic shift of x,i.e. S<sup>i</sup>x=(x<sub>i</sub>, x<sub>i+1</sub>, …, x<sub>i-1</sub>) (where i+1 means (i+1)rood n). If there exists a positive integer 0【r≤n making S<sup>r</sup>x=x+(u, u, …, u) hold for some u∈GF(q), then the r is called one of the generalized periods of this sequence x. The least one r<sub>min</sub> of such periods is called the minimum generalized period of x. In narticular, if r<sub>min</sub>=n (i. e. the
作者 杨义先
出处 《Chinese Science Bulletin》 SCIE EI CAS 1991年第19期1650-1655,共6页
基金 Project supported by the National Natural Science Fund for Youth
关键词 REED-SOLOMON CODE error-correcting CODE sequence. REED-SOLOMON CODE ERROR-CORRECTING CODE SEQUENCE
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部