期刊文献+

NON-SYMMETRIC ASSOCIATION SCHEMES OF SYMMETRIC MATRICES 被引量:2

NON-SYMMETRIC ASSOCIATION SCHEMES OF SYMMETRIC MATRICES
原文传递
导出
摘要 constant whenever (x, y)∈Rk. This constant is denoted by p<sub>ij</sub><sup>k</sup>. Then we call X=(X,{Ri}<sub>0≤i≤d</sub>) and association scheme of class d on X. The non-negative integers p<sub>ij</sub><sup>k</sup> are called the intersection numbers of X.
出处 《Chinese Science Bulletin》 SCIE EI CAS 1991年第18期1501-1505,共5页
关键词 SYMMETRIC MATRICES ASSOCIATION SCHEME INTERSECTION number. symmetric matrices, association scheme, intersection number.
  • 相关文献

同被引文献10

  • 1[1]Bannai E, Ito T. Algebraic Combinatorics I [M]. Benjamin California, 1984. 25 (5): 102
  • 2[2]Wan ZheXian, Notes on finite geometries and the construction of PBIB designs Vl Some association schemes and PBIB designs based on finite geometries [J]. Acta Scientia Sinica, 1965, 14 (12): 1 872-1 876
  • 3王仰贤.利用矩阵构作多个结合类的结合方案[J].应用数学学报,1980,3(2):97-195.
  • 4[4]Egawa Y. Assocition Schemes of Quadratic forms [J]. J Combinatorial Theory (A), 1985, 38 (1): 1 - 14
  • 5[7]Wang Yangxian, Ma Jianmin. Association schemes of Symmetric matrices over a finite field of characteristic two [J].J Statistical Planning and Inference, 1996, 51 (2): 351-371
  • 6[8]Ma Jianmin, Wang Yangxian. Note on Association Schemes of Symmetric Matrices in Characteristic 2, 河北师院学报, 1997, (2): 1-7
  • 7[10]Wang Yangxian, Wang Chunsen, Ma Changli, Ma Jianmin. Association Schemes of Quadratic Forms and Symmetric Bilinear Forms [J]. J Algebraic Combinatorics, 2003, 17 (2): 149-161
  • 8[11]Ma Changli, Wang Yangxian. Automorphisms of Association Schemes of Quadratic forms over a Finite Field of characteristie Two [J]. Algebra Colloguium, 2003, 10 (1): 63-74
  • 9霍元极 祝学理.利用对称矩阵构作多个结合类的结合方案[J].应用数学学报,1987,10:257-266.
  • 10Yangxian Wang,Chunsen Wang,Changli Ma.Association schemes of quadratic forms over a finite field of characteristic two[J].Chinese Science Bulletin,1998,43(23):1965-1968. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部