摘要
利用恒等式a(x<sub>1</sub>+x<sub>2</sub>)±x<sub>1</sub>x<sub>2</sub>=±(x<sub>1</sub>±a)(x<sub>2</sub>±a)±a<sup>2</sup>求方程的整数解与证明条件不等式十分有效。例1 求方程x+y-xy=324的整数解解原方程化为 -(x-1)(y-1)+1=324即(x-1)(y-1)=-323。∵ -323=(-1)×323=l×(-323) =(-17)×19=17×(-19)∴ (1){x-1=-1 y-1=323;(2){x-1=1 y-1=-323; (3){x-1=-17 y-1=19;(4){x-1=17 y-1=-19。解得: (1){x=0, y=324;(2){x=2, y=-322; (3){x=-16 y=20;(4){X=18 y=-18。注意到原方程是对称轮换方程,