摘要
The response of fuel-tank-sloshing to aircraft maneuver is a difficult mathematical problem to be solved. Beginning with setting up the mechanical model and the respective mathematical model, this paper uses both F.E. and B.E.M. to imitate the sloshing process. The paper has developed some special techniques to deal with strong nonlinear characteristics, and provided satisfactory numerical results of displacements and stress for low frequency, resonance, high frequency and fuel tank dynamic response characteristics. The program not only assures convergence and stability of the solution, but also has the function of graphic display. It is a valuable technique to deal with the strong nonlinear oscillation of fuel tank with large amplitude and moving boundary condition on free surface.
The response of fuel-tank-sloshing to aircraft maneuver is a difficult mathematical problem to be solved. Beginning with setting up the mechanical model and the respective mathematical model, this paper uses both F.E. and B.E.M. to imitate the sloshing process. The paper has developed some special techniques to deal with strong nonlinear characteristics, and provided satisfactory numerical results of displacements and stress for low frequency, resonance, high frequency and fuel tank dynamic response characteristics. The program not only assures convergence and stability of the solution, but also has the function of graphic display. It is a valuable technique to deal with the strong nonlinear oscillation of fuel tank with large amplitude and moving boundary condition on free surface.