摘要
In this paper, the Dirichlet boundary value problems for the 2n order nonlinear elliptic systems of sev-eral complex equations are considered,where z = x+iy, U = (U<sub>1</sub>(z),...,U<sub>n</sub>(z))’, Q<sup>j</sup> = (Q m)n×n,A<sup>jk</sup>= (A <sub>m</sub><sup>k</sup>)n×n, A= (A<sub>1</sub>,...,A<sub>n</sub>)’, Q <sub>m</sub>=Q <sub>m</sub>(z,U,U<sub>2</sub>,...,U<sub>z<sup>n</sup> z<sup>n-1</sup></sub>.U<sub>z<sup>2n</sup></sub>…U<sub>z<sup>n+1</sup></sub> <sup>n+1</sup>,A <sub>m</sub><sup>k</sup> =A <sub> </sub><sup>k</sup>(z,U,U<sub>2</sub>z,...,U<sub>z</sub><sup>n</sup> <sup>n-1</sup>),A<sub>m</sub>=A<sub>m</sub>(z,U,U<sub>z</sub>,...,U<sub>z</sub><sup>n</sup> <sup>n-1</sup>),j,k≥0,j+k≤2n-1, l,m=.1,2,...,n,T<sup>j</sup>(z)=(T (z),...,T<sup>j</sup>(z))′D={|z|【1}, ={{|z| =1}is the boundary of D , γis the outer normal vector of . Suppse that (1) , (2) satisfy the condition C in D :(i) For arbitrary vector of real value functions with 2n - 1 order continuous partial derivative: U(z)
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
1991年第1期25-26,共2页
Journal of Sichuan Normal University(Natural Science)