摘要
0 IntroductionIn this paper, we establish new generalization of the Bihari-Wendroff type multivariate integral in-equalities and show their application to some partial differential equation.We consider the following integral inequalities;where, (x)=(x<sub>1</sub>,…,x<sub>n</sub>)∈R<sub>n</sub><sup>+</sup>= [0,-∞)k;(x<sub>i</sub>,s<sub>i</sub>)=(x<sub>1</sub>,…,x<sub>i</sub>-1,s<sub>i</sub>.,x<sub>i+1</sub>,…,x<sub>0</sub>).We suppose that u(x)≥0, c(x)≥c<sub>0</sub>】0, α;(x)≥0 (i=1,…,n), and they belong to C(R<sub>n</sub><sup>+</sup>);c(x) and α<sub>1</sub>(x) (i=1, …,n) are nondecreasing in (R<sub>n</sub><sup>+</sup>); g<sub>i</sub>(t)=g<sub>i</sub>(c<sub>0</sub>)】0 (i=1,…,n), and they
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
1991年第1期73-74,共2页
Journal of Sichuan Normal University(Natural Science)