摘要
Suppose that D is a (N+1)-connected (0≤N≤∞),bounded circular domain in the interior of theunit circle, O∈D and its boundary = <sub>j</sub>∈C<sub>μ</sub><sup>2</sup>(0【μ【1), where <sub>j</sub> (j=1,…,N) are situated inside <sub>0</sub>={z;|z|=1}.Now we consider the nonlinear uniformly elliptic complex equation of first order in z-plane:W<sub> </sub> = F(z,W,W<sub>z</sub>), F = Q<sub>1</sub>W<sub>2</sub>+ Q<sub>2</sub>W<sub> </sub>+A<sub>1</sub>W + A<sub>2</sub>W + A<sub>3</sub>,Q<sub>j</sub> = Q<sub>j</sub>(z,W,W<sub>z</sub>), j=1,2, A<sub>j</sub>= A<sub>j</sub>(z,W), j=1,2,3, z∈D, (1)and suppose that the equation (1) satisfies condition C, i. e.The function F(z,W, v) is continuous with respect to z ∈D, W ∈E and V ∈E (E is the
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
1991年第1期85-86,共2页
Journal of Sichuan Normal University(Natural Science)