摘要
作者在没有线性结构的 H-空间内证明了某些重合点定理,推广了江嘉禾,Lassonde,Park,Brow-der,Ben-El-Mechaiekh-Dequire-Granas,Simons,Ko-Tan 和 Takahashi 等人的结果。应用所得的重合点定理,证明了某些新的择一型定理和函数取值于 Riesz 空间的极小极大不等式,推广了 Fan,Park,Las-sonde,Browder,Kim,lohvidov,Bardaro-Ceppitelli 等人的相应结果.
In this paper,author proves some coincidence theorems in H-spaces without the linear structure.These theorems improve and generalize the corresponding results of Jiang,Lassonde,park,Browder,Ben-El-Mechaiekh-Deguire-Granas,Simons,Ko- Tan and Takahashi,etc.By applying coincidence theorems above,he obtains some new alternative theorems and minimax in- equalities for two functions taking values in topological Riesz spaces,which develop the corresponding results of a few workers including Fan,park,Lassonde,Browder,Kim,Iohvidov,Bardaro-Ceppitelli.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
1991年第2期27-32,共6页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金
关键词
H-空间
H-凸
H-紧
紧开
紧闭
拓扑空间
重合点定理
可收缩集
RIESZ空间
锥
极小极大定理
择一定理
H-space
H-convex
H-compact
compactly open
compactly closed
topological space
coincidence theorem
contractible set
Riesz space
cone
minimax theorem
alternative theorem