摘要
本文研究下列二阶泛函微分方程解的振动性质: (r(t)x′(t))′+q(t)x′(t)+M(t,x(g(t)))=0给出了方程(*)存在非振动解的必要条件以及存在振动解的充分判据。
This paper considers the following second order functional diferential equation:(r(t)x' (t))'+q(t)x' (t)+M(t, x(g(t)))=0 (*)The sufficient conditions for(*)to be oscillatory and necessary conditions for(*)to be nonoscillatory are given by the use of 'coefficient factor'
出处
《广东工业大学学报》
CAS
1991年第4期1-13,共13页
Journal of Guangdong University of Technology
关键词
泛函微分方程
振动解
非振动解
强积分小
强积分小因子
functional differential equtions, oscillatory solution, nonoscillatory solution, strongly intergrally small, strongly intergrally small factor.