期刊文献+

时域有限差分法中的数值色散及误差分析 被引量:2

Numerical Dispersion and Error Analysis in Finite-Difference Time-Domain Method
下载PDF
导出
摘要 本文给出了一种时域有限差分法(FDTD)的误差分析方法。通过分析波动过程中的色散方程,导出了数值色散关系的特征矩阵。利用量纲分析建立评价函数,详细讨论了在一维、二维及三维情形下的齐次波动方程FDTD求解时的数值有效性。结果表明数值波长是影响齐次波动方程数值收敛的最主要因素,验证了阻抗匹配媒质在FDTD计算中达到吸收电磁波的明显效果。 In this paper, a method of error analysis is proposed for the finite-difference time-domain(FDTD) method. Characteristic matrix of numerical dispersion is derived based on dispersion relation of the dispersion-equation in the wave motion. By using dimensional analysis, evaluation functions have been built up. Numerical availability for homogeneous wave equations is discussed in detail on the case of one-, two-, and three-dimensions. The numerical results are shown that the numerical-wavelength is the main factor to influence numerical convergence. In addition, impedance matched medium layer has been verified with absorbing electromagnetic wave obviously in the FDTD computation.
出处 《新型工业化》 2013年第2期92-99,共8页 The Journal of New Industrialization
基金 天津市应用基础及前沿技术研究计划(12JCYBJC10500)
关键词 时域有限差分法 特征矩阵 评价函数 阻抗匹配媒质 FDTD method characteristic matrix evaluation function impedance matched medium
  • 相关文献

参考文献7

  • 1K.S.Yee. Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media[J].IEEE Transactions on Antennas and Propagation,1996.585-589.
  • 2G.Mur. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations[J].IEEE Transactions on Electromagnetic Compatibility,1981.377-382.
  • 3王一平.工程电动力学[M]西安:西安电子科技大学出版社,2007.
  • 4葛德彪;闫玉波.电磁波时域有限差分方法(第三版)[M]西安:西安电子科技大学出版社,2011.
  • 5张跃辉.矩阵理论与应用[M]北京:科学出版社,201.
  • 6J.P.Berenger. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves[J].Journal of Computational Physics,1996.363-379.
  • 7Yu-xian Zhang,Hong-xing Zheng. An Isotropic PML for the FDTD Solver[A].2012.

同被引文献3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部