期刊文献+

微等离子器件亮度随电流变化的阶梯现象 被引量:1

The Step Phenomenon Of Luminance-Current Characteristics Of Microplasma Decvices
下载PDF
导出
摘要 微等离子体器件具有放电空间尺寸很小、放电气体的压强接近大气压的特点,表现出不同于常规等离子体放电器件的特性,近年来作为一种新型放电发光器件受到国际上的广泛关注。本实验主要研究共面电极微等离子体器件在不同氖气气压下、正弦波驱动电路下,共面电极微等离子体器件的发光亮度与放电电流之间的关系。实验结果表明,在正弦波驱动电路下,氖气气压小于等于50k Pa时,线阵列共面电极微等离子体器件发光亮度随放点电流均方根呈阶梯状上升;氖气气压大于60k Pa时,线阵列共面电极微等离子体器件发光亮度随放电电流均方根增长近似于线性增加。 Microplasma devices with a very small discharge space under high pressure close to the atmospheric pressure,show some special luminance-current characteristics comparing with conventional plasma,and attach widespread attention in recent years. This work is to develop the relationship between luminance and current of coplanar microplasma devices under different neon 25 gas pressure with AC sinusoidal voltage driving circuit. The results of experiments show that there is the step phenomenon of luminance-current characteristics of line array of coplanar microplasma devices when the AC sinusoidal voltage driving circuit and neon gas pressure is less than or equal to 50kPa and the luminance of increase linearly with the discharge current increasing when neon gas pressure is higher than 60kPa.
出处 《新型工业化》 2013年第6期53-56,共4页 The Journal of New Industrialization
基金 教育部新教师基金共面电极微等离子体电流气压特性数值仿真与机理研究(20110131120005)
关键词 微等离子体 共面电极结构 光电特性 阶梯现象 microplasma device coplanar electrode structure photoelectric properties staircase phenomenon
  • 相关文献

参考文献17

  • 1Stark RH,Schoenbach KH. Direct current high-pressure glow discharges[J].Journal of Applied Physics,1999,(04):2075-2080.
  • 2Kurunczi P,Shah H,Becker K. Hydrogen Lyman-alpha and Lyman-beta emissions from high-pressure microhollow cathode discharges in Ne-H2 mixtures[J].Journal of Physics B:Atomic,Molecular and Optical Physics,1999,(22):L651-L658.
  • 3Frame JW,Wheeler DJ,DeTemple TA. Microdischarge devices fabricated in silicon[J].Applied Physics Letters,1997,(09):1165-1167.
  • 4Park SJ,Chen J,Liu C. Silicon microdischarge devices having inverted pyramidal cathodes:Fabrication and performance of arrays[J].Applied Physics Letters,2001,(04):419-421.
  • 5Park SJ,Kim KS,Eden JG. Nanoporous alumina as a dielectric for microcavity plasma devices:Multilayer Al/Al2O3 structures[J].Applied Physics Letters,2005,(22):221501.
  • 6Park SJ,Eden JG. Microdischarge devices with a nanoporous Al2O3 dielectric:operation in Ne and air[J].IEEE Transactions on Plasma Sciences,2005,(02):572-573.
  • 7Kim SO,Eden JG. Arrays of square cross-section microdischarge devices fabricated in glass and driven by interdigitated electrodes[J].IEEE Transactions on Plasma Sciences,2005,(02):566-567.
  • 8Kim SO,Eden JG. Arrays of microplasma devices fabricated in photodefinable glass and excited AC or DC by interdigitated electrodes[J].IEEE Photonics Technology Letters,2005,(07):1543-1545.doi:10.1109/LPT.2005.848260.
  • 9Park SJ,Kim KS,Chang AY. Confinement of nonequilibrium plasmas in microcavities with diamond or circular cross sections:sealed arrays of Al/Al2O3/glass microplasma devices with radiating areas above 20 cm2[J].Applied Physics Letters,2006,(22):221501.
  • 10Park SJ,Readle JD,Price AJ. Lighting from thin (《1 mm) sheets of microcavity plasma arrays fabricated in Al/Al2O3/glass structures:planar,mercury-free lamps with radiating areas beyond 200 cm2[J].Journal of Physics D:Applied Physics,2007,(13):3907-3913.

同被引文献29

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部