期刊文献+

一种基于PCP的块稀疏RPCA运动目标检测算法 被引量:3

A Block-sparse RPCA Algorithm for Moving Object Detection Based on PCP
下载PDF
导出
摘要 针对已有的块稀疏RPCA运动目标检测方法难以适用于动态变化背景的问题,提出一种基于PCP的块稀疏RPCA运动目标检测算法。该算法首先通过基于PCP的RPCA方法对视频序列降维,将观测图像序列分解成低秩背景矩阵和稀疏前景矩阵;然后根据运动特性的光流一致性特点,结合前景区域的空间相关性,进一步得到大致的前景稀疏块;再利用基于PCP的块稀疏RPCA方法,动态地估计前景运动区域,重构出前景目标。实验结果表明,该算法能有效地排除运动和变化背景的干扰,提高对小目标的检测率。 Aiming at the shortcoming of being unsuitable for dynamic background for the existing RPCA based block-sparse moving object detection method,this paper proposes a PCP based block-sparse RPCA object detec-tion algorithm. First,the observed image sequence was regarded as the sum of a low-rank background matrix and a sparse outlier matrix,and then the decomposition was solved by the RPCA method via PCP. According to the consistent optical flow of motion saliency,by imposing spatial coherence on these regions,the rough fore-ground regions were obtained. Finally block-sparse RPCA algorithm through PCP was used to estimate fore-ground areas dynamically and to reconstruct the foreground objects. Extensive experiments demonstrate that our method can exclude the interference of background motion and change,simultaneously improving the detec-tion rate of small targets.
出处 《华东交通大学学报》 2013年第5期30-36,共7页 Journal of East China Jiaotong University
基金 江西省科技支撑计划项目(20123BBE50093) 江西省教育厅科技项目(GJJ12306) 江西省研究生创新专项基金项目(YC2012-X015)
关键词 目标检测 鲁棒主成分分析 主成分追踪 块稀疏 object detection robust principal component analysis principal component pursuit block-sparse
  • 相关文献

参考文献11

  • 1JOLLIE I. Principal component analysis[M].New York:springer-verlag,1986.338-343.
  • 2郭厚焜,吴峰,黄萍.基于压缩感知和字典学习的背景差分法[J].华东交通大学学报,2012,29(1):43-47. 被引量:5
  • 3ZHI G,LOONG F,MO S. Block-sparse RPCA for consistent foregroud detection[A].Germany:Springer-Verlag Berlin,2012.690-703.
  • 4CANDES E,LI X,MA Y. Robust principal component analysis[J].Journal of the Association for Computing Machin-ery,2011,(03):1-37.
  • 5GUYON C,BOUWMANS T,ZAHZAH E. Robust principal component analysis for background subtraction systematic eval-uation and comparative analysis[M].Lapochelle:Intech,2012.223-238.
  • 6CHEN S B,DONOHO D L,SAUNDERS M A. Atomic decomposition by basis pursuit[J].Society for Industrial and Ap-plied Mathematics,2001,(01):129-159.doi:10.1137/S003614450037906X.
  • 7WIXSON L. Detecting salient motion by accumulating directionally-consistent flow[J].IEEE Transactions on Pattern Analy-sis and Machine Intelligence,2000,(08):774-780.doi:10.1109/34.868680.
  • 8ZHOU X,YANG C,YU W. Moving object detection by detecting contiguous outliers in the low-Rank representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013.597-610.
  • 9BRUTZER S,HOFERLIN B,HEIDEMANN G. Evaluation of background subtraction techniques for video surveillance[J].Computer Vision and Pattern Recognition,2011.1937-1944.
  • 10ZIVKOVIC Z,HEIJDEN F. Efficient adaptive density estimation per image pixel for the task of background subtraction[J].Pattern Recognition Letters,2006,(07):773-780.doi:10.1016/j.patrec.2005.11.005.

二级参考文献14

  • 1HORN B K P,SCHUNCK B G.Determining optical flow[J].Artificial Intelligence,1981,17(1):185-203.
  • 2ALI S,SHAH M.Human action recognition in videos using kinematic features and multiple instance learning[J].IEEE Trans-actions on Pattern Analysis and Machine Intelligence,2010,32(2):288-303.
  • 3HUI K C,SIU W C.Extended analysis of motion-compensated frame difference for block-based motion prediction error[J].IEEE Transactions on Imaging Processing,2007,16(5):1232-1245.
  • 4TSAI D M,LAI S C.Independent component analysis-based background subtraction for indoor surveillance[J].IEEE Trans-actions on Imaging Processing,2009,18(1):158-167.
  • 5OLIVER N M,ROSARIO B,PENTLAND A P.A bayesian computer vision system for modeling human interactions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):831-843.
  • 6MONNET A,MITTALA,PARAGIOS N.Scene modeling and change detection in dynamic scenes:a subspace approach[J].Computer Vision and Image Understanding,2009,113(1):63-79.
  • 7AHARON M,ELAD M,BRUCKSTEIN A.K-SVD:an algorithm for designing over complete dictionaries for sparse repre-sentation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.
  • 8MAIRAL J,BACH F,PONCE J,et al.Online learning for matrix factorization and sparse coding[J].Journal of MachineLearning Research,2010,11(3):19-60.
  • 9JI S H,YA X,CARIN L.Bayesian compressive sensing[J].IEEE Transactions on Signal Processing,2008,56(6):2346-2356.
  • 10DO T T,GAN L,NGUYEN N,et al.Fast and efficient compressive sensing using structurally random matrices[J].IEEETransactions on Signal Processing,2012,60(1):139-154.

共引文献5

同被引文献37

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2NAOYA O, KENICHI K, KAZUHIRO K. Moving object detection from optical flow without empirical thresholds[J]. Ieice Transac- tions on Information & Systems, 1998 (2) :243-245.
  • 3SARVESH V,ANUPAM A. A survey on activity recognition and behavior understanding in video surveillance [J]. Vision Com- puter, 2013,29(10) :983-1008.
  • 4HARISH K D. Autonomous detection and tracking under illumination changes occlusions and moving camera [J]. Signal Processing, 2015,117:343--354.
  • 5FUKUNAGA T, KUBOTA S, ODA S, et al. GroupTracker: Video tracking system for multiple animals under severe occlusion[J]. Computational Biology & Chemistry, 2015,57 : 39-45.
  • 6FISHER R B. CAWIAR:context aware vision using image-based active recognition [EB/OL].[2011-11-01]. http://homepages.inf. ed.ae.uk/rbf/CAVIAR/eaviar.htm.
  • 7FISHER R B:Computer-assisted prescreen of video streams for unusual activities[EB/OL].[2011-11-01], http://homepages.inf.ed. ac.uk/rbf/BEHACE/.
  • 8RYO0 M S, AGGARWAL J K. ut-interaction dataset,ICPR contest on semantic description of human activities (SDHA)[EB/ 0L].[2012-02-01]. http://cvrc.ece.utexas.edu/SDHA2010/HumanInteraction.html.
  • 9IBARGUREN A,MAURTUA I,PEREZ M A,et al. Multiple target tracking based on particle filtering for safety in industrial robotic cells[J]. Robotics and Autonomous Systems, 2015,72:105-113.
  • 10KOWAL M C, POLIJtRD N S, SRINIVASA S S. Pose estimation for planar contact manipulation with manifold particle filters [J]. International Journal of Robotic s Research, 2015,34 (7) ~ 922-945.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部