期刊文献+

Marcinkiewicz算子及交换子在非齐型空间上的有界性 被引量:1

Boundedness of Marcinkiewicz Integral and Commutator on Non-homogeneous Spaces
下载PDF
导出
摘要 若μ是Rd空间上的非倍测度,Marcinkiewicz算子及其与RBMO(μ)函数生成的交换子在非齐型广义Morrey空间上的有界性,该结论推广了Sawano的结果。 Under the assumption that μis a non-doubling measure on Rd ,this paper studies the boundedness of Marcinkiewicz integrals and commutators generated by Marcinkiewicz integrals with RBMO(μ) functions on generalized Morrey spaces of non-homogeneous spaces. The result extends the conclusion of Y.Sawano.
出处 《华东交通大学学报》 2013年第5期87-91,共5页 Journal of East China Jiaotong University
关键词 广义MORREY空间 MARCINKIEWICZ积分 RBMO(μ)函数 交换子 generalized Morrey spaces Marcinkiewicz integral RBMO(μ)functions commutators
  • 相关文献

参考文献4

二级参考文献20

  • 1Jun Feng LI,Shan Zhen LU.Strongly Singular Integral Operators on Weighted Hardy Space[J].Acta Mathematica Sinica,English Series,2006,22(3):767-772. 被引量:6
  • 2陈冬香,陈杰诚.具有粗糙核的Marcinkiewicz积分交换子在齐次Herz空间中的有界性[J].数学物理学报(A辑),2006,26(6):832-839. 被引量:3
  • 3NAZAROV F,TREIL S,VOLBERG A.Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators in nonhomogeneous spaces[J].Internat Math Res,1998(9):463-487.
  • 4TOLSA X.BMO,H1 and Calderón-Zygmund operators for non-doubling measures[J].Math Ann,2001,319(1):89-149.
  • 5SHI Yan-long,TAO Xiang-xing.Multilinear risez potential operators on Herz-type Spaces and generalized Morrey Spaces[J].Hokkaido Mathematic Journal,2009,38(4):635-662.
  • 6GRAFAKOS L,TORRES R H.Multilinear Calderón-Zygmund theory[J].Adv in Math,2002,165(1):124-164.
  • 7SAWANO Y.Generalized Morrey Spaces for non-doubling measures.Nonlinear differ[J].Equ Appl,2008,15(4):412-425.
  • 8XU Jingshi.Boundedness of multilinear singular integrals for non-doubling measures[J].J Math Anal Appl,2007,327(1):471-480.
  • 9Tolsa X. BMO, H^1 and Calderon-Zygmund operator for non-doubling measures. Math Ann, 2001, 319: 89-149.
  • 10Tolsa X. Littlewood-Paley theory and T(1) theorem with non-doubling. Advance in Math, 2001, 164: 57-116.

共引文献32

同被引文献10

  • 1Deng Donggao, Han Yongsheng, Yang Dachun. Besov spaces with non-doubling measure [ J ]. Transactions of the American Mathematical Society, 2006, 358 (7) : 2965-3001.
  • 2Tolsa X. Littlewood-Paley theory and the T( 1 )theorem with non-doubling measures[ J]. Advances in Mathematics,2001, 164 (1) : 57-116.
  • 3Hu Guoen, Meng Yan, Yang Dachun. New atmoic characterization of H1 space with non-doubling measures and its applications [ J ]. Mathematical Proceedings of the Cambridge Philosophical Society, 2005, 138 ( 1 ) : 151-171.
  • 4Hu Guoen, Lin Haibo, Yang Dachun. Marcinkiewicz integrals with non-doubling measures[J]. Integral Equations and Opertor Theory,2007, 58(2): 205-238.
  • 5Hu Guoen, Lin Haibo, ang Dachun. Multilinear commutators of singular integrals with non-doubling measures [ J ]. Integr Equ Oper Theory,2005, 52(2): 235-255.
  • 6Tolsa X. BMO, H, and Calder6n-Zygmund operators for non-doubling measures [ J ]. Math Ann,2001, 319 (1) : 89-149.
  • 7Stein E M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz[ J]. Trans Am Math, 1958, 88(2) : 430--466.
  • 8Sawano Y. Generalized Morrey spaces for non-doubling measures [ J ]. Nonlinear Differential Equations and Applications, 2008, 15(4) :414--425.
  • 9李亮,江寅生.非齐型空间中一类满足Hrmander条件的Marcinkiewicz交换子估计[J].数学学报(中文版),2010,53(1):87-96. 被引量:1
  • 10陈冬香,吴丽丽.具有非倍测度的Marcinkiewicz积分交换子在Morrey空间的有界性[J].数学物理学报(A辑),2011,31(4):1105-1114. 被引量:10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部