期刊文献+

特殊建筑双微方法几何造型

Geometric Modeling of Special Buildings by Two-differential Method
下载PDF
导出
摘要 莫斯科水晶岛和伦敦再保险大厦以奇特、优美的建筑造型给人以强烈的视觉冲击。莫斯科水晶岛的基本造型曲面是压缩后的伪球面,再保险大厦的基本造型曲面是接近于劣圆弧回转面的自由曲面。采用微分几何、微分方程方法(简称双微方法)讨论了这二个造型曲面上的斜驶线网格。平直的欧氏空间中的斜直线,具有定向和短程二个重要性质。将斜直线的定向性引伸到二维弯曲空间(回转曲面)上,就是斜驶线的内蕴定向性。从斜驶线的定义入手,推导出回转曲面上斜驶线的微分方程,求介得到劣圆弧回转面和伪球面上斜驶线方程,并通过相应的解析解或数值解,得到斜驶线上各离散点的坐标。用样条曲线依次连接相邻坐标点,得到样条逼近的斜驶线。再经过旋转阵列和镜像,就得到建筑表面的斜驶线网格。可供其他类似建筑的几何造型提供参考。 It's very impressive that Crystal Island in Moscow and Re-Insurance Building in London because of their excellent architectural style. The geometrical modeling of these two buildings are investigated by the method of differential geometry and differential equation,which is known as two-differential in brief. The inclined straight line in Euclidean space is oriental and short-range. Similar to this orientation,loxodromic line in two-dimensional curved space is intrinsic oriental. After the differential equation of loxodromic line in revolution surface is derived from this definition,the restriction equations of those in inferior-arc revolution surface and in pseudo-sphere can obtain. Then it's easy to get the coordination of all discrete points according to the corresponding analytical or numerical solutions. The three dimension geometry is modeled by the steps of connecting adjacent points,rotating array and mirror. It can be referred to modeling other similar buildings.
出处 《土木建筑工程信息技术》 2013年第6期22-28,共7页 Journal of Information Technology in Civil Engineering and Architecture
关键词 几何造型 微分几何 微分方程 双微方法 斜驶线 劣圆弧回转面 伪球面 Geometric Modeling Differential Geometry Differential Equation Two-differential Method Loxodromic Line Inferior-arc Revolution Surface Pseudo-sphere
  • 相关文献

参考文献2

二级参考文献9

  • 1吴大任.微分几何讲义[M].北京:人民教育出版社,1979..
  • 2田宗若.张量分析[M].西安:西北工业大学出版社,1986..
  • 3朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2008.
  • 4陈维恒.微分几何[M].北京:北京大学出版社,2006.
  • 5丁汉,朱利民.复杂曲面数字化制造的几何学理论和方法[M].北京:科学出版社,2011.
  • 6Les Piegl,Wayne Tiller.非均匀有理B样条[M].赵罡,穆国旺,王拉柱,译.北京:清华大学出版社,2010:1-3.
  • 7白仁飞,刘逵昕.Rhino5数字造型大风暴[M].北京:人民邮电出版社,2012:62-288.
  • 8曾旭东,王大川,陈辉.参数化建模[M].湖北:华中科技大学出版社,2011:14-8.
  • 9王大川.犀牛建模入门[EB/OL].(2010-03-02)[2012-12-28].http://www.doe88.com/p-593933784445.html.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部