期刊文献+

隐式中点法对于非线性阻尼结构的稳定性 被引量:4

Stability of implicit midpoint algorithm for solving nonlinear damped structures
下载PDF
导出
摘要 用能量守恒的方法证明了隐式中点法对于非线性指数阻尼的结构动力方程为数值稳定。工程中常用的双线性本构模型作为这种指数模型的特殊情况,同样满足数值稳定性条件。为了验证证明过程的可靠性,对一个单自由度体系和两个多自由度结构进行动力非线性计算分析,对比不同时间增量步的计算结果。从而给出了针对这种非线性动力方程计算的稳定的数值积分方法,为动力计算数值稳定性提供理论基础。 Stability of the implicit midpoint algorithm for solving a equation of motion with nonlinear damping was analyzed by using the conservation of energy here. Bilinear model, a special case of nonlinear damping, was also discussed in stability analysis of this algorithm. Nonlinear dynamic analysis computation of one SDOF model and two MDOF models were performed to check the reliability of the proof process. Comparing the computation results with different time step, the stable numerical intergation method for solving dynamic equations with nonlinear damping was gained, it provided a theoretical basis for numerical stability of dynamic computation.
作者 潘天林 吴斌
出处 《振动与冲击》 EI CSCD 北大核心 2013年第23期38-42,共5页 Journal of Vibration and Shock
基金 国家自然科学基金资助(51161120360)
关键词 隐式中点法 指数阻尼 能量守恒 数值稳定 Convergence of numerical methods Damping Energy conservation Equations of motion
  • 相关文献

参考文献16

  • 1Crisfield M A,Shi J. A Co-rotational element/time integration strategy for non-linear dynamics[J].{H}International Journal for Numerical Methods in Engineering,1994,(11):1897-1913.
  • 2王光远;王焕定.论变形体虚功原理的充分性[J]哈尔滨建筑工程学院学报,1984(03):31-40.
  • 3Li Y,Wu B,Ou J P. Stability of average acceleration mehod for structures with nonlinear damping[J].Earthquake Engineering And Engineering Vibration,2006,(01):87-92.
  • 4Li Y,Wu B. Stability of average acceleration method for structures with nonlinear damping[J].Earthquake Engineering and Engineering Vibration,2006,(01):687-692.
  • 5Bauchau C L,Bottasso L. Trainelli,robust integration schemes for flexible multi-body systems[J].{H}Computer Methods in Applied Mechanics and Engineering,2003,(03):395-420.
  • 6Kuhl D,Ramm E. Constraint energy-momentum algorithms and its application to nonlinear dynamics of shells[J].{H}Computer Methods in Applied Mechanics and Engineering,1996,(04):293-315.
  • 7Belytschko T,Schoeberle D F. On the unconditional stability of an implicit algorithm for non-linear structural dynamics[J].{H}Journal of Applied Mechanics,1975,(75):865-869.
  • 8Newmark N M. A method of computation for structural dynamics[J].{H}Journal of Engineering Mechanics ASCE,1959,(03):67-94.
  • 9Simo J C,Hughes T J R. Computational inelasticity[M].{H}New York:Springer-Verlag,1998.
  • 10Simo J C,Tarnow N. The discrete energy-momentum methods:conserving algorithms for nonlinear elastodynamics[J].Zeitschrift für Angewandte Mathematik und Physik (ZAMP),1992,(05):757-793.

二级参考文献6

共引文献3

同被引文献24

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部