期刊文献+

脉冲噪声的最小均值M-估计有源控制算法 被引量:2

Least Mean M-estimate Algorithm for Active Control of Impulsive Noise
下载PDF
导出
摘要 经典的滤波―X最小均方算法(Fx LMS)已经被广泛应用于有源噪声控制(ANC)领域。但是当存在脉冲噪声时,它的性能就会严重退化。基于鲁棒统计的概念介绍了一种新型自适应算法,采用的目标函数为M-估计函数,而不是传统的最小均方误差。该算法分别采用了Huber函数、Hampel三段下降M估计函数等四种不同的M-估计函数作为目标函数,仿真结果表明所采用的算法能有效地消除脉冲噪声,并且与日本学者Akhtar改进的加窗算法相比表现了更好的收敛性。 The classical Filter-x least mean square (Fx LMS) algorithm has been widely used in active noise control (ANC), but its performance would degrade dramatically if there were impulsive noise. In this paper, a new adaptive algorithm based on the concept of robust statistics was presented, whose objective function is the M-estimate function instead of the mean square error (MSE). Four different M-estimate functions, such as Huber function and Hampel’s three parts of re-descending M-estimate function, were used as the objective function and computer simulations were carried out to verify the efficiency of the presented algorithm for active impulsive noise control. The simulation results show that compared with the adding-windows algorithm modified by Japanese scholar Akhtar, the performance of the presented algorithm can eliminate the impulsive noise effectively and has a better convergence.
出处 《噪声与振动控制》 CSCD 2013年第1期16-21,共6页 Noise and Vibration Control
基金 国家自然基金(11172047) 北京市属高等学校人才强教深化计划资助项目(PHR201106131)
关键词 声学 有源噪声控制 脉冲噪声 M―估计 acoustics active noise control impulsive noise M-estimate
  • 相关文献

参考文献13

  • 1Koike S. Adaptive threshold nonlinear algorithm for adaptive filters with robustness against impulsive noise[J].{H}IEEE Transactions on Signal Processing,1997,(09):2391-2395.
  • 2Y.Zou,S.C Chan,T S Ng. A robust M-estimate adaptive filter for impulse noise suppression[A].1999.1765-1768.
  • 3R.Settineri,M.Najim,D Ottaviani. Order statistic fast Kalman filter[A].1996.116-119.
  • 4S.Koile. Adaptive threshold nonlinear algorithm for adaptive filters with robustness against impulsive noise[A].1996.1644-1647.
  • 5Sun X,Kuo S M,Meng G. Adaptive algorithm for active control of impulsive noise[J].{H}Journal of Sound and Vibration,2006,(1-2):516-522.
  • 6Akhtar M T,Mitsuhashi W. Improving performance of Fx LMS algorithm for active noise control of impulsive noise[J].{H}Journal of Sound and Vibration,2009,(3-5):647-656.
  • 7Y.Zou,S.C Chan,T S Ng. Least mean M-estimate algorithms for robust adaptive filtering in impulsive noise[J].{H}IEEE Transactions on Circuits and Systems-II:Analog and Digital Signal Processing,2000,(12):1564-1569.
  • 8周翊,郑成诗,李晓东.一种用于立体声声学回波消除的新型鲁棒梯度法格梯形自适应滤波算法[J].声学学报,2010,35(2):223-229. 被引量:4
  • 9P.Petrus. Robust huber adaptive filter[J].{H}IEEE Transactions on Signal Processing,1999,(04):1129-1133.
  • 10S.C.Chan,Y-X Zou. A recursive least M-estimate algorithm for robust adaptive filtering in impulsive noise:fast algorithm and convergence performance analysis[J].{H}IEEE Transactions on Signal Processing,2004,(04):975-991.

二级参考文献15

  • 1Sondhi M M, Morgan D R, Hall J L. Stereophonic acoustic echo cancellation-an overview of the fundamental problem. IEEE Signal Processing letters, 1995; 2(8): 148-151.
  • 2Benesty J, Morgan D R, Sondhi M M. A better understanding and an improved solution to the specific problems of stereophonic acoustic echo cancellation, IEEE Trans. Signal Processing, 1998; 6(2): 156-165.
  • 3Gansler T, Benesty J. New insights into the stereophonic acoustic echo cancellation problem and an adaptive non- linearity solution, IEEE Trans. Signal Processing, 2002; 10(5): 257-267.
  • 4Khong A W H, Naylor P A. Stereophonic acoustic echo cancellation employing selective-tap adaptive algorithms, IEEE Trans. Audio, Speech, and Language Processing, 2006; 14(3): 785-796.
  • 5Rao H, Farhang-Boroujeny B. Fast LMS/Newton algorithms for stereophonic acoustic echo cancellation, IEEE Trans. Signal Processing, 2009; 57(8): 2919-2930.
  • 6Tukey J W. A survey of sampling from contaminated distributions in contributions to probability and statistics: I. Olkin, Ed. Stanford University Press, 1960.
  • 7Huber P J. Robust statistics. NY: John Wiley, 1981.
  • 8Haykin S. Adaptive filter theory. 4th ed., Prentice Hall, 2001.
  • 9Mayyas K. Stereophonic acoustic echo cancellation using lattice orthogonalization, IEEE Trans. Speech and Audio Processing, 2002; 10(7): 517-525.
  • 10Zou Y, Chan S C, Ng T S. Least mean M-estimate algorithms for robust adaptive filtering in impulsive noise, IEEE Trans. Circuits Syst. II, 2000; 47(12): 1564 1569.

共引文献3

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部