期刊文献+

基于插值方法的EMO多样性保持策略

Multi-object Optimization of Diversity Preservation Strategy Based on Interpolation-extrapolation Strategy
下载PDF
导出
摘要 针对演化多目标优化(evolutionary multi-objective optimization,EMO)算法搜索到的近似Pareto前沿出现间断或不完整现象的问题,提出了基于插值方法的演化多目标多样性保持策略,利用标准测试函数对NSGAII(支配关系排序的遗传算法)和提出的算法进行多样性和收敛性指标测试,数值试验结果表明,所提出的算法性能得到明显改进,优于NSGAII算法。 There exist the following two situations:approximate Pareto front disconnects or the non-dominated solutions concentrate in some regions.The interpolation-extrapolation strategy was used to improve the search capabilities and to find more non-dominated solutions in those regions.The standard test function was used to measure the convergence and diversity of the presented algorithm and NSGAII algorithm.The numerical experiments show that the performance of the proposed algorithm has been improved significantly better than NSGAII algorithm.
作者 陈琼 叶理德
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2013年第6期808-811,共4页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 国家自然科学基金资助项目(61170202) 武汉市科技攻关计划基金资助项目(201210121029)
关键词 演化多目标优化算法 多样性保持策略 插值方法 evolutionary multi-objective optimization algorithm diversity maintenance strategy interpolation-extrapolation strategy
  • 相关文献

参考文献9

  • 1ZITZLER E,THIELE L,BADER J. SPAM:set pref erence algorithm for multi-objective optimization[A].[S.l.]:[s.n.],2008.847-858.
  • 2VAN VELDHUIZEN D A,LAMONT G B. Multi-objective evolutionary algorithms:analyzing the state-of-the-art[J].IEEE Transactions on Evolutionary Computation,2000,(02):125-147.
  • 3ZITZLER E. Evolutionary algorithms for multi-objective optimization:methods and application[D].Zurich:Swiss Federal Institute of Technology (ETH),1999.
  • 4徐建伟,黄辉先,彭维,李密青.多目标进化算法的分布度评价方法[J].计算机工程,2008,34(20):208-209. 被引量:3
  • 5LI H,ZHANG Q. Multi-objective optimization problems with complicated pareto sets,MOEA/D and NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2009,(02):284-302.
  • 6FARHANG-MEHR A,AZARM S. Diversity assessment of pareto optimal solution sets:an entropy approach[A].Piscataway:IEEE Service Center,2002.723-728.
  • 7GARCIA A J,VERDEJO V G,FIGUEIRASVIDAI A R. New algorithms for improved adaptive convex combination of LMS transversal filters[J].IEEE Tram Signal Processing,2005,(06):2239-2249.doi:10.1109/TIM.2005.858823.
  • 8吴帆,李石君.一种高效的层次聚类分析算法[J].计算机工程,2004,30(9):70-71. 被引量:13
  • 9HU J,GOODMAN E D. The hierarchical fair competition HFC model for parallel evolutionary algorithms[A].[S.1.]:IEEE Press,2002.49-54.

二级参考文献9

  • 1Kalton A, Langley P, Wagstaff K, et al. Generalized Clustering, Supervised, and Data Assignment. In: Procecdings of the 7th ACMSIGKDD.San Francisco, CA, 2001:299-304
  • 2Fayyad U, Reina C, Bradley P S. Initialization of Iterative Refinement Clustering Algorithms. In: Proceedings of ICDE99,1999:512
  • 3HanJiawei MichelineKamber.数据挖掘概念与技术[M].北京:机械工业出版社,2001.152-160.
  • 4Deb K, Agrawal S, Pratap A, et al. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II[R]. Kanpur: Indian Institute of Technology, 2000.
  • 5Deb K, Jain S. Running Performance Metrics for Evolutionary Multi-Objective Optimization[R]. Kanpur: Indian Institute of Technology, Tech. Report: 2002004, 2002.
  • 6Deb K, Pratap A, Agrawal S, et al. A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II[J]. IEEE Trans. on Evolutionary Computation, 2002,6(2): 182-197.
  • 7Mostaghim S, Teich J. A New Approach on Many Objective Diversity Measurement[J]. Evolutionary Computation, 2005, 3(1): 1-16.
  • 8Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multi-Objective Optimization[C]//Proc, of the EUROGEN'01. Athens, Greece: [s. n.], 2001.
  • 9Deb K, Mohan M, Mishra S. A Fast Multi-objective Evolutionary Algorithm for Finding Well-spread Pareto-optimal Solutions[R]. Kanpur: Indian Institute of Technology, 2003.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部