期刊文献+

基于改进神经网络的智能库存管理应用研究 被引量:1

The Research and Application of the Intellectual Methods of Inventory Management by Improved Neural Network
下载PDF
导出
摘要 随着电子技术的进步、世界经济一体化、全球化局面的出现,企业对知识和信息的有效管理已日益紧迫,可以说企业管理正进入新的理念。该文将改进的粒子群算法优化BP神经网络应用于库存管理系统中,建立库存预测模型为库存管理智能化提供辅助决策。从而使企业生产库存管理可以有效的对库存量进行控制,使库存量维持在一个比较合理的水平,将给企业带来巨大利益,因此对该方法的研究具有非常重要的现实意义。 Along with the fast development of economy,research based on enterprise competition ability has been the front field of man-agement science.This paper applied IPSOBP neural networks technology to demand forecast of inventory.Forecasting the amount of in-ventory passing this module can help the enterprise maintains a more reasonable raw material inventory quantity under the continue pro-ducing,and give asuggestion of raw material purchase.So the researches of thesis own academic creation and certain realistic meaning.
机构地区 炮兵学院
出处 《电脑知识与技术(过刊)》 2009年第6期1461-1463,共3页 Computer Knowledge and Technology
关键词 粒子群优化算法 神经网络 库存预测 Particle Swarm Optimization Neural Network Inventory Forecast
  • 相关文献

参考文献8

  • 1窦全胜,周春光,马铭.粒子群优化的两种改进策略[J].计算机研究与发展,2005,42(5):897-904. 被引量:39
  • 2李宁,付国江,库少平,陈明俊.粒子群优化算法的发展与展望[J].武汉理工大学学报(信息与管理工程版),2005,27(2):26-29. 被引量:28
  • 3王存睿,段晓东,刘向东,周福才.改进的基本粒子群优化算法[J].计算机工程,2004,30(21):35-37. 被引量:43
  • 4J. Kennedy,R. C. Eberhart and SHI Yu-hui.Swarm intelligence. . 2001
  • 5Ven den Bergh F,Engelbrecht A.P.Using Neighbourhoods with the Guarranteed Convergence PSO. Preceedings of the 2003 IEEE,Swarm In-telligence Symposium . 2003
  • 6Clerc M.Think locally,act locally:the way of life of cheap - PSO , an Adaptive particle swarmoptimizer. http :/ / www. mauriceclerc. net .
  • 7Y Shi,R Eberhart.A modified Particle Swarm Optimizer. Evolutionary Computation, Proceedings of IEEE International Conference on . 1998
  • 8Maniezzo,V.Genetic evolution of the topology and weight distribution of neural networks. IEEE Transactions on Neural Networks . 1994

二级参考文献48

  • 1[1]Kennedy j, Eberhart R. Particle Swarm Optimization[C]. Perth,Australia: Proc. IEEE Int. Conf. on Neural Networks, 1995; 1942-1948
  • 2[2]Reynolds C W. Flocks, Herds and Schools: A Distributed Behavioral Model[J]. Computer Graphic, 1987, 21(4):25-34
  • 3[3]Shi Y, Eberhart R C. Parameter Selection in Particle Swarm Optimization[J]. Evolutionary Programming Ⅶ, Lecture Notes in Computer Science, Springer, 1998
  • 4[4]Shi Y, Eberhart R C. A modified Particle Swarm Optimizer[C]. Anchorage, Alaska: IEEE International Conference on Evolutionary Computation, 1998-05:69-73
  • 5[5]Beekman M, Ratnieks F L W. Long-rang Foraging by the Honey-bee, Apis Mellifera L [J]. Functional Ecologicy, 2000,(14):490-496
  • 6[6]Wilson E O. Sociobiology: The New Synthesis[M]. Cambridge, MA:Belknap Press, 1975
  • 7R.C. Eberhart, J. Kennedy. A new optimizer using particle swarm theory. The 6th Int'l Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.
  • 8J. Kennedy, R. C. Eberhart. Particle Swarm Optimization. In:Proc. IEEE Int'l Conf. Neural Networks. Piscataway, NJ:IEEE Service Center, 1995. 1942~1948.
  • 9M. Clerc. TRIBES-A parameter free particle swarm optimizer.http://clerc.maurice.free. fr/PSO, 2002-08-10/2003-10-08.
  • 10Hu Xiaohui, R. C. Eberhart. Adaptive particle swarm optimization: Detection and response to dynamic systems. IEEE Congress on Evolutionary Computation, Honolulu, Hawaii, USA,2002.

共引文献106

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部