期刊文献+

矩阵乘积行列式下界的改进 被引量:3

The Improvement of the Lower Bound of the Matrix Product Determinant
下载PDF
导出
摘要 李耀堂和李继成眼JournalofComputationalMathematics熏19穴4雪穴2001雪365-370演给出两个H-矩阵乘积的行列式的下界估计,应用我们所得的M-矩阵的Hadamard乘积的Oppenheim型不等式的新结论和方法,推广和改进了李耀堂和李继成的相应结论。 Li Yao-tang and Li Ji-cheng have estimated the lower bounds of two H-matrix product determinants recently. With the application of the new conclusion and method we obtained from the Oppenheim inequation of M-matrix Hadamard Product, we have generalized and improved Li Yao-tang and Li Ji-cheng's corresponding conclusion.
机构地区 莆田学院数学系
出处 《苏州科技学院学报(自然科学版)》 CAS 2004年第2期23-27,32,共6页 Journal of Suzhou University of Science and Technology (Natural Science Edition)
基金 福建省教育厅科研基金(JB01206)
关键词 H-矩阵 M-矩阵 HADAMARD乘积 OPPENHEIM型不等式 行列式的下界 H-matrix M-matrix Hadamard Product Oppenheim Inequation lower bound of determinant
  • 相关文献

参考文献10

  • 1Yao-tang Li (Department of Mathemotics, Yuunan University, Kunming 650091, China) Ji-cheng Li (Department of Mathematics, Xian Jiaotong University, Xian 71049, China).ON THE ESTIMATIONS OF BOUNDS FOR DETERMINANT OF HADAMARD PRODUCT OF H-MATICES[J].Journal of Computational Mathematics,2001,19(4):365-370. 被引量:6
  • 2Styan G P H. Hadamard products and multivariate statistical analysis[J]. Linear Algebra Appl, 1973,6:217-240.
  • 3Lynn M S. On the Schur product of the H-matrices and nonnegative matrices and related inequalities [J]. Proc Cambridge Philos, 1 964,60: 425-431.
  • 4Ando T. Inequalities for M-matrices [J]. Linear and Muhilinear Algebra. 1980,8:291-316.
  • 5Liu Jianzhou,Zhu Li. Some improvement of Oppenheim's Inequality for M-matrices [J]. SIAM J Matrix Anal Appl, 1997,18(2): 305-311.
  • 6Yang Zhongpeng,Liu Jianzhou. Some results on Oppenheim's inequalities for M-natrices [J]. SIAM J Matrix Anal Appl,2000,21(3):904-912.
  • 7Berman A,Plemmons R J.Nonnegative matricesinthe Mathematical Sciens[M].New York:Academic Press,1979.
  • 8周景新,杨忠鹏.一类非奇异F-矩阵的Oppenheim型不等式[J].哈尔滨工业大学学报,2002,34(6):853-857. 被引量:3
  • 9杨忠鹏,翁东东.关于HF-矩阵的一个未解决问题[J].福州大学学报(自然科学版),2003,31(1):13-14. 被引量:5
  • 10刘建州,曹艳华.一些特殊类型矩阵的加性复合矩阵的性质(英文)[J].苏州科技学院学报(自然科学版),2004,21(1):1-5. 被引量:1

二级参考文献22

  • 1李炯生.对称部分为半正定的方阵[J].数学学报(中文版),1996,39(3):376-381. 被引量:39
  • 2胡永建,陈公宁.有关实正定矩阵的一些性质[J].北京师范大学学报(自然科学版),1996,32(1):40-46. 被引量:21
  • 3张晓东,杨尚骏.M-矩阵的行列式不等式[J].工程数学学报,1996,13(3):107-111. 被引量:4
  • 4黄廷祝.M矩阵的Oppenheim型不等式[J].应用科学学报,1996,14(3):369-371. 被引量:7
  • 5[1]Marshall A W, Olkin. Inequalities: Theory of Majorization and Its Applications[M]. New York: Academic Press. 1979.
  • 6[2]Bennan, Abraham. Nonnegative Matrices in the Mathematical Sciences[M]. New York: Academic Press, INC. 1979.
  • 7[3]Gao Yi-ming ,Wang Xiao-hui. Criteria for Generalized Diagonally Dominant Matrices and M-matrices Ⅱ[J]. Linear Algebra and Its Applications, 1996, 248:339-353.
  • 8[4]Chao Kung-Mei, Wang Chi-Song. Applications of M-Matrices to Majorizafion[J]. Linear Algebra and Its Applications, 1992,169:31-40.
  • 9[5]Yip E L. A Necessary and Sufficient Condition for M-Matrices and Its Relation to Block LU Factorization[J]. Linear Algebra and Its Applications,1995, 235:261-274.
  • 10[6]Farid F O, Lancaster P. Spectral Properties of Diagonally Dominant Infinite Matrices[J].Linear Algebra and Its Applications,1991, 143:1-17.

共引文献8

同被引文献24

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部