期刊文献+

一种基于形状信息描述的图像特征匹配算法 被引量:2

Local shape patch based feature matching method
下载PDF
导出
摘要 针对多视图匹配利用模板匹配精度低、计算量大等问题尤其是少纹理物体特征匹配问题,利用灰度或纹理特征进行图像匹配易产生误匹配等问题。提出基于边缘形状描述子,以实现多视点图像点匹配。首先,对边缘图像利用曲线凸性,将边缘分割为近似直线段组,将连接多个直线段的点称为关键点。然后,将关键点周围直线段组定义为形状特征包。最后,利用局部形状特征包中所有点集相对其几何中心的位置关系分布形成描述子。实验结果表明:该方法有效地将匹配概率提高了23.64%,较SIFT匹配概率有较大提高;通过形状匹配实验证明提出算法在形状匹配中相对形状上下文匹配方法提高了6.67%。该方法对比例、平移具有不变性且对噪声等问题不敏感。 In order to solve the problem of low matching accuracy in the field of feature matching and point correspondence,a novel shape based on descriptor for point correspondence was proposed.First,based on the property of the curve convexity and the collinearity of the edge points,the edge map was divided into a group of roughly straight lines.The connection point of more than one straight line was defined as the key point.Then,all the straight lines around the key point formed a local shape patch.At last,by using the distribution of the edge points of the local shape patch related to the center of the shape patch,a novel descriptor was formed.Experimental results indicate that the proposed method can improve the correct matching probability about 23.64% than SIFT descriptor.According to the shape matching experiment,the results show that the proposed method can improve the correct matching probability about 6.67% than shape context method.The proposed descriptor is invariant to scale and translation,and it is not sensitive to the noise.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第S2期33-39,共7页 Journal of Central South University:Science and Technology
基金 江苏省高校自然科学基金资助项目(11KJB510024)
关键词 形状描述子 形状匹配 特征提取 shape descriptor shape matching feature extraction
  • 相关文献

参考文献15

  • 1Mohan A,Papageorgiou C,Poggio T.Example-based object detection in images by components. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2001
  • 2Viola P,Jones M.Rapid Object Detection using a Boosted Cascade of Simple Features. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . 2001
  • 3Marr D,Hildreth E.Theory of edge detection. Proceedings of the Royal Society of London.Series B,Biological Sciences . 1980
  • 4Ke Y,Sukthankar R.PCA-SIFT:A more distinctive representation for local image descriptors. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 2004
  • 5Harris C,Stephens M.A combined corner and edge detector. Proceedings of the 4th Alvey Vision Conference . 1988
  • 6Y Gao,M Maggs.Feature-Level Fusion in Personal Identification. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 2005
  • 7Belongie S,Malik J,Puzicha J.Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2002
  • 8Wen W,Lozzi A.Recognition and Inspection of Manufactured Parts Using Line Moments of Their Boundaries. Pattern Recognition . 1993
  • 9Roth P M,,Winter M.Survey of appearance-based methods for object recognition. Inst. for Computer Graphics and Vision, Graz University of Technology, Austria, Tech. Rep. ICG-TR-01/08 . 2008
  • 10Leibe B,Leonardis A,Schiele B.Combined object catego-rization and segmentation with an implicit shape model. Proceedings of ECCV04Workshop on Statistical Learn-ing in Computer Vision . 2004

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部