期刊文献+

一种基于遗传算法的自适应多聚焦图像融合新方法

An adaptive multi-focus image fusion method based on genetic algorithm
下载PDF
导出
摘要 提出一种基于遗传算法的自适应分块多聚焦图像融合新方法,该融合算法的主要思想是选择拉普拉斯能量和sum-modified-Laplacian(SML)作为衡量图像子块清晰的度量,边缘信息保留值作为适应度函数,最终运用遗传算法自动搜寻到最优子块大小实现图像的融合。实验结果表明:本文提出的融合方法性能明显优于传统的图像融合方法。 A novel adaptive block-based multi-focus image fusion method was presented by using genetic algorithm.In the method,the clarity of image sub-block was measured by the sum-modified-Laplacian evaluation metric,and calculated the fitness function of each individual through edge information retention.Then via genetic algorithm,the optimal size of the sub-block was automatically obtained,which was finally used to fuse the source images.Experimental results indicate that the performance of our method is obviously superior to that of series of conventional fusion methods.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第S2期228-231,共4页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(60963012 61262034) 教育部科学技术研究重点资助项目(211087) 江西省自然科学基金资助项目(2010GZS0052 20114BAB211020) 江西省青年科学家培养对象资助资助项目(20122BCB23017) 江西省教育厅科技项目(GJJ13302)
关键词 多聚焦图像融合 拉普拉斯能量和 适应度函数 遗传算法 multi-focus image fusion sum-modified-Laplacian fitness function genetic algorithm
  • 相关文献

参考文献11

  • 1张新曼,韩九强,王勇.一种遗传搜索块寻优的不同聚焦点图像融合算法[J].电子与信息学报,2006,28(11):2054-2057. 被引量:6
  • 2Tian,Jing,Chen,Li,Ma,Lihong,Yu,Weiyu.Multi-focus image fusion using a bilateral gradient-based sharpness criterion. Optics Communication . 2011
  • 3S.T. Li,J.T. Kwok,Y.N. Wang.Combination of images with diverse focuses using the spatialfrequency. Information Fusion . 2001
  • 4Yufeng Zheng,Edward A Essock,Bruce C Hansen,Andrew M Haun.Anew metric based onextendedspatial frequency andits application to DWT based fusion algorithms. Information Fusion . 2007
  • 5Yang B,Li S T.Multifocus image fusion and restoration withsparse representation. IEEE Transactions onInstrumentation and Measurement . 2010
  • 6Li S T,James T K,Wang Y N.Multifocus image fusion using artificial neural networks. Pattern Recognition . 2002
  • 7Michael Unser.Texture classification and segmentation using wavelet frames. IEEE Transactions on Image Processing . 1995
  • 8Ishita D,Bhabatosh C,Buddhajyoti C.Enhancing effectivedepth-of-field by image fusion using mathematical morphology. Image and Vision Computing . 2006
  • 9Xu M,Chen H,Varshney P K.An Image Fusion Approach Based on MarkovRandom Fields. IEEE Transactions on Geoscience and Remote Sensing . 2011
  • 10Huang W,Jing Z L.Evaluation of focus measures in multi-focus image fusion. Pattern Recognition . 2007

二级参考文献8

  • 1Burt P J,Kolczynski R J.Enhanced image capture through fusion.Proceedings of Fourth International Conference on Computer Vision[C].Berlin,Genlin,1993,4,173-182.
  • 2Mallat S G.A theory for multiresolution signal decomposition:The wavelet representation.IEEE Trans.on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
  • 3Li H,Manjunath B S,Mitra S K.Multisensor image fusion using the wavelet transform.Graphical Models and Image Processing,1995,57(3):235-245.
  • 4Zhang Z,Blum R S.A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application.Proc.IEEE,1999,87(8):1315-1326.
  • 5Li S T,Kwok J T,Wang Y N.Multifocus image fusion using artificial neural networks.Pattern Recognition Letters,2002,23(8):985-997.
  • 6Goldberg D E.Genetic Algorithms in Search,Optimization and Machine Learning.Addison-Wesley Publishing Company,Inc.,Massachusetts,1989,ⅩⅢ:1-62.
  • 7Maes F,Collignon A,Vandermeulen D,et al..Multimodality image registration by maximization of mutual information.IEEE Trans.on Medical Imaging,1997,16(2):187-198.
  • 8黄继武,戴宪华.基于视觉特性的图象分割编码算法[J].中国图象图形学报(A辑),1999,4(5):400-404. 被引量:13

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部