期刊文献+

超重力场反应加工TiB_2基凝固陶瓷——Ti-6Al-4V多尺度多层次复合研究 被引量:4

Multiscale and Multilevel Composite of Solidified TiB_2 Matrix Ceramic to Ti-6Al-4V Achieved by Reaction Processing in High-gravity Field
原文传递
导出
摘要 采用超重力场反应加工技术,通过陶瓷-钛合金之间熔化连接与原子互扩散,制备出TiB2基凝固陶瓷—Ti-6Al-4V层状复合材料。XRD、FESEM及EDS分析发现,正是作为陶瓷基体相的TiB2片晶(或板晶)可诱发强烈的自增韧机制,使TiC-TiB2细晶凝固陶瓷具有高的弯曲强度与断裂韧性,并且也正是因在超重力场反应加工引发的热真空环境下钛合金与液态陶瓷发生熔化连接与原子互扩散,进而在凝固后期相继诱发TiB2与Ti液的包晶反应、TiB自钛液的析晶反应及TiB与钛液的共晶反应,最终实现以TiB2、TiB尺寸与分布为特征的陶瓷—钛合金多尺度(微米—亚微米—微纳米)多层次(TiC/TiB2—TiC1-x/TiB/TiB2—TiB2/Ti/TiC1-x/TiB—TiB2/TiC1-x/TiB/Ti—TiB/TiC1-x/Ti—TiC1-x/Ti—Ti)复合。 Based on fusion bonding and atomic interdiffusion between the ceramic and Ti alloy, the layered composite of the solidified TiB2 matrix ceramic to Ti-6Al-4V alloy was achieved by reaction processing in high-gravity field. XRD, FESEM and EDS results show it is just the intensive self-toughening mechanism initiated by fine platelets of TiB2 primary phases that the solidified ceramic present a excellent combination of high flexural strength and high fracture toughness; meanwhile, as a result of fusion bonding between the liquid ceramic and Ti alloy in thermal-vacuum circumstances induced by reaction processing in high-gravity field, followed by intensive atomic interdiffusion between the liquid ceramic and liquid titanium, peritectic reaction of the solidified TiB 2 and liquid Ti has to take place at the final stage of material solidification, followed by direct growth of TiB solids from liquid Ti and subsequent eutectic reaction of TiB solids and liquid Ti; finally, the compsoite of the solidifed ceramic with Ti alloy is achieved in multiscale (micrometer/submicrometer/ micro-nanomter) and multilevel (TiC-TiB2 /TiC 1-x-TiB-TiB2 /TiB2 -Ti-TiC 1-x-TiB/TiB2-TiC1-x -TiB-Ti/TiB-TiC 1-x -Ti/TiC 1-x-Ti/Ti) characterized by the size and distribution of TiB2 and TiB phases.
机构地区 军械工程学院
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第S1期383-387,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51072229)
关键词 陶瓷-金属层状复合材料 多尺度多层次复合 超重力场反应加工 熔化连接 原子互扩散 layered composite of ceramic with metal multiscale and multilevel composite reaction processing in high-gravity field fusion bonding atomic interdiffusion
  • 相关文献

参考文献12

  • 1潘传增,张龙,赵忠民,曲振生,杨权.超重力下燃烧合成TiB_2-TiC共晶复合陶瓷[J].复合材料学报,2010,27(1):109-117. 被引量:26
  • 2Zhongmin Zhao,Long Zhang,Yigang Song,Weiguo Wang,Hongbo Liu.Microstructures and properties of large bulk solidified TiC–TiB 2 composites prepared by combustion synthesis under high gravity[J]. Scripta Materialia . 2009 (3)
  • 3D. Vallauri,I.C. Atías Adrián,A. Chrysanthou.TiC–TiB 2 composites: A review of phase relationships, processing and properties[J]. Journal of the European Ceramic Society . 2008 (8)
  • 4Mirva Eriksson,David Salamon,Mats Nygren,Zhijian Shen.Spark plasma sintering and deformation of Ti–TiB 2 composites[J]. Materials Science & Engineering A . 2007 (1)
  • 5Annika Pettersson,Pernilla Magnusson,Patrik Lundberg,Mats Nygren.Titanium–titanium diboride composites as part of a gradient armour material[J]. International Journal of Impact Engineering . 2005 (1)
  • 6Haibo Feng,Dechang Jia,Yu Zhou.Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites[J]. Composites Part A . 2004 (5)
  • 7B. Kieback,A. Neubrand,H. Riedel.Processing techniques for functionally graded materials[J]. Materials Science & Engineering A . 2003 (1)
  • 8L. L. Wang,Z. A. Munir,Y. M. Maximov.Thermite reactions: their utilization in the synthesis and processing of materials[J]. Journal of Materials Science . 1993 (14)
  • 9Ernest S C Chin.Army focused research team on function ally graded armor composites. Materials Science Engineering A Structural Materials Properties Microstructure and Processing . 1999
  • 10Lee JC,Suh JY,Ahn JP. Metallurgical and Materials Transactions . 2003

二级参考文献2

共引文献25

同被引文献27

  • 1郭绍庆,袁鸿,谷卫华,余槐,崔岩,李晓红.采用非增强中间层电子束焊接SiC_P/Al[J].复合材料学报,2006,23(1):92-98. 被引量:6
  • 2SONG J, HUANG C, LU M, ZOU B, WANG S, WANG J, AN J. Effects of TiC content and meR phase on microstructure and mechanical properties of ternary TiB2-based ceramic cutting tool materials[J]. Materials Science and Engineering A, 2014, 605: 137-143.
  • 3SONG J, HUANG C, ZOU B, LIU H, WANG J. Microstructure and mechanical properties of TiB2-TiC-WC composite ceramic tool materials[J]. Materials & Design, 2012, 36: 69-74.
  • 4ZHAO H, CHENG Y. Formation of TiB2-TiC composites by reactive sintering[J]. Ceramic International, 1999, 25: 353-358.
  • 5GOTMAN I, TRAVITZKY N A, GUTMANSA E Y. Dense in situ TiB2-TiN and TiBz-TiC ceramic matrix composites: Reactive synthesis and properties[J]. Materials Science Engineering A, 1998, 244: 127-137.
  • 6BHAUMIK S K, DIVAKAR C, SINGH A K, UPADHYAYA G S Synthesis and sintering of TiB2 and TiB2-TiC composite under high pressure[J]. Materials Science and Engineering A, 2000, 279: 275-281.
  • 7LIU G, LI J. High-gravity combustion synthesis: A fast and furnace-free way for preparing bulk ceramic materials[J]. Journal of Asian Ceramic Societies, 2013, 1 : 134-142.
  • 8WANG Yu-jin, PENG Hua-xin, YE Feng, ZHOU Yu. Effect of TiB2 content on microstructure and mechanical properties of in-situ fabricated TiB2/B4C composites[J]. Transactions of Nonferrous Metals Society of China, 2011, 21: 369-373.
  • 9KLINGER L, GOTMAN I, HORVITZ D. In situ processing of TiBJTiC ceramic composites by thermal explosion under pressure: Experimental study and modelling[J]. Materials Science and Engineering A, 2001,302: 92-99.
  • 10DUSCHANEK H, ROGL P, LUKAS H. A critical assessment and thermodynamic calculation of the boron-carbon-titanium (B-C-Ti) ternary system[J]. J Phase Equilibria, 1995, 16(1): 46-60.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部