期刊文献+

锆加入量对船板钢焊接CGHAZ低温韧性及夹杂物形态影响 被引量:3

Effects of Zirconium on Impact Toughness of CGHAZ and Inclusion Morphology of Hull Structure Steel Plate during the Large Heat Input Welding
原文传递
导出
摘要 以加入微量锆船板钢为研究对象,采用Gleeble3500并结合SEM,TEM等实验方法研究了微量锆元素对F40船板钢大热输入焊接热循环粗晶热影响区(CGHAZ)低温韧性、夹杂物形态的影响。结果表明:与未添加锆元素船板钢相比,添加0.01%锆,钢中形成大量2~3 um尺寸范围、椭球状复合粒子,经150 kJ/cm大热输入焊接后,–60℃下CGHAZ冲击功高达224 J,材料的焊接性能大大提高;锆含量为0.02%时,钢中含锆夹杂物呈大尺寸矩形状,经150kJ/cm大热输入焊接后,–60℃下CGHAZ冲击功只有38 J,大尺寸矩形夹杂物是焊后低温韧性急剧下降的主要原因,分析表明含锆夹杂物形态受锆元素的添加量、错配度、ZrO2粒子界面能因素影响。 The Gleeble3500 combined with SEM,TEM and other experimental methods were employed to investigate the effects of zirconium content on impact toughness of coarse grain heat affected zone(CGHAZ) and the inclusion morphology of F40 hull structure steel plate during the large heat input welding.The results show that a large number of ellipsoidal complex inclusions in the range of 2~4 μm found in CGHAZ when 0.01% zirconium is added in the steel,the impact energy reaches 224 J at –60 ℃ experiencing 150 kJ/cm welding heat input.But the large-size rectangular inclusions are found in CGHAZ when 0.02% zirconium were added in the steel,the impact energy falls to 38 J at –60 ℃ experiencing 150 kJ/cm welding heat input.The large-size inclusions,especially rectangular inclusion,are the main cause for the sharp decline of low temperature toughness after welding.Further analysis shows that the morphology of zirconium-containing inclusion is affected by the amount of zirconium addition,the misfit and ZrO2 particle interfacial energy.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第S2期317-320,共4页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51075158) 福建省自然科学基金(2012J01212)
关键词 含锆夹杂物 CGHAZ 大热输入焊接 夹杂物形态 zirconium-containing complex inclusions CGHAZ large welding heat input inclusion morphology
  • 相关文献

参考文献4

二级参考文献53

  • 1余圣甫,雷毅,黄安国,谢明立,李志远.氧化物冶金技术及其应用[J].材料导报,2004,18(8):50-52. 被引量:52
  • 2亓效刚,陈茂爱,陈俊华.微合金钢第二相粒子对HAZ区奥氏体晶粒影响[J].材料科学与工艺,2005,13(4):368-371. 被引量:13
  • 3李新明,郑少波,郑庆,朱立新.钢的氧化物冶金技术[J].上海金属,2005,27(5):55-60. 被引量:17
  • 4Evans G M. Microstructure and Properties of Ferritic Steel Welds Containing A1 and Ti [J].Welding Journal, 1995, 74 (8) :249.
  • 5Kluken A O, Grong O. Mechanisms of Inclusion Formation in AI-Ti-Si Mn Deoxidized Steel Weld Metals [J]. Metallurgical and Materials Transactions , 1989,20(8) : 1335.
  • 6Shim J H, Cho Y W, Chung S H, et al. Nucleation of Intra granular Ferrite at TizO3 Particle in Low Carbon Steel[J]. Acta Mater. , 1999,47(9) :2751.
  • 7Lee J L, Pan Y T. The Formation of Intragranular Acicular Ferrite in Simulated Heat Affected Zone [J].ISIJ Interna- tional, 1995,35(8) :1027.
  • 8Fox A B, Valdez M E, Gisby J, et al. Dissolution of ZrO2, AlzO3, MgO and MgA1204 Particles in a B2O3 Containing Commercial Fluoride Free Mould Slag[J]. ISIJ International, 2004,44(5) : 836.
  • 9OH K S, Choo W Y , Lee H G. Behavior of Nonmetallic In clusions During Steel Making Processes for Acicular Ferrite Formation in C-Mn Structural Steel [C]//The Fourth Work shop on High Performance Steel Pohang:2002.
  • 10OH K S, CHOO W Y. Effect of Small Amounts of A1, Mg, and Zr Addition to the Ti Oxide Steel Melt on Behavior of Nonmetallic Inclusions for IAF Formation at HAZ [J]. Cur rent Advances in Materials and Processes, 2002, 15(1):207.

共引文献43

同被引文献16

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部