摘要
在水平流动作用下混合流体(比如水和酒精)的Rayleigh-Benard对流,由于外部强制力和内在行波传播的耦合,构成了研究开流系统中斑图选择和非线性耗散波的理想模型系统,本文介绍对该系统初步的研究成果。首先简述了线性稳定性分析以及水平流对行波非线性分岔特性的影响,然后主要给出我们对这一系统在有限空间非周期边界条件下一维行波对流的研究成果,包括存在的时空形态及其特性对Rayleigh数和槽道长度的依赖关系,最后给出了进一步工作的展望。
Reylaigh-Benard convection in binary fluid mixtures with through-flow provides a particularly of
useful model for the study of pattern formation and nonlinear dissipative waves in open flow systems. In
this paper we will introduce some preliminary research results for this system. First, we present briefly the
linear stability analysis and discuss the influence of through-flow on the nonlinear bifurcation of spatial uniform
patterns. Then, we focus on our results about the traveling-wave convection of this system in limited spaces
with non-periodic boundary conditions, including existing spatiotemporal states and the dependence of their
properties on Rayleigh number and the aspect rations of the channel. In the end, some further studies for this
system are outlined.
出处
《力学进展》
EI
CSCD
北大核心
2004年第2期263-269,共7页
Advances in Mechanics
基金
国家重点基础研究专项经费(G20000773)
中国博士后科学基金
关键词
双流体混合物
行波对流
水平流
时空演化
流体力学
traveling-wave convection
binary fluid mixture
through-flow
spatiotemporal evolution