期刊文献+

小型飞行器空气动力学 被引量:8

AERODYNAMICS OF SMALL VEHICLES
下载PDF
导出
摘要 对小型飞行器设计中涉及的空气动力学问题进行了综述。描述了雷诺数和展弦比对固定翼飞行器的设计以及飞行性能的影响。在低雷诺数飞行范围。翼型上边界层的特性对飞行器的设计尤为关键。本文讨论了大量有关层流边界层(包括层流分离泡影响)的实验,作为例子,列举了几个此飞行雷诺数范围的小型低空无人驾驶飞行器(UAVs)。此外,对扑动翼推进的理论模型进行了简述;其范围涵盖了早期的准定常附着流模型,以及后来计及非定常尾涡、流动分离以及气动弹性等效应的模型。文中还介绍了那些与理论互补并最终导致扑翼机设计成功的实验。 In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.
出处 《力学进展》 EI CSCD 北大核心 2004年第2期270-279,共10页 Advances in Mechanics
关键词 空气动力学 雷诺数 固定翼 扑翼 小型无人驾驶飞行器 飞行器设计 low Reynolds number fixed wing flapping wing small unmanned vehicles
  • 相关文献

参考文献79

  • 1Broeren A P, Bragg M B. Unsteady stalling characteristics of thin airfoils at low Reynolds number. In: Mueller T J,ed. Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications. Reston, VA: AIAA, 2001. 191~213
  • 2Cross A. Captive carry testing of remotely piloted vehicles.In: Mueller T J, ed. Low Reynolds Number Aerodynamics.Germany: Springer-Verlag, 1989. 394~406
  • 3Evangelista R, McGhee R J, Walker B S. Correlation of theory to wind-tunnel data at Reynolds numbers below 500 000.In: Mueller T J, ed. Low Reynolds Number Aerodynamics,Germany: Springer-Verlag, 1989. 146~160
  • 4Foch R J, Toot P L. Flight testing Navy low Reynolds number (LRN) unmanned aircraft. In: Mueller T J, ed.Low Reynolds Number Aerodynamics, Germany: SpringerVerlag, 1989. 407~417
  • 5Siddiqi S, Evangelista R, Kwa T S. The design of a low Reynolds number RPV. In: Mueller T J, ed. Low Reynolds Number Aerodynamics, Germany: Springer-Verlag, 1989.381~393
  • 6Foch R J, Ailinger K G. Low Reynolds number, long endurance aircraft design. AIAA, Aerosp Design Conf, AIAA,Irvine, CA, 1992. 92~263
  • 7Foch R J. A low cost airobotic platform. In: Proc AUVSI,Florida. Arlington V A: Assoc Unmanned Veh Syst Int,1996. 863~868
  • 8Foch R J, Dahlburg J P, McMains J W, Bovais C S, Carruthers S L, et al. Dragon Eye, an airborne sensor system for small units. In: Proc Unmanned Systems. Florida. St Louis, MO: Mira CD-Rom Publ, 2000. 1~13
  • 9Kellogg J, Bovais C, Dahlburg J, Foch R, Gardner J, et al.The NRL Mite air vehicle. In: Proc Int Conf Unmanned Air Veh Syst, 16th, Bristol, UK, Bristol, UK: Univ. Bristol,2001. 1~14
  • 10Grasmeyer J M, Keennon M T. Development of the Black Widow micro-air vehicle. In: Mueller T J, ed. Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications. Reston, VA: AIAA, 2001, 519~535

同被引文献54

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部