期刊文献+

基于事务型K-Anonymity的动态集值属性数据重发布隐私保护方法 被引量:7

Privacy Preserving in Re-Publication of Dynamic Set-Valued Data Based on Transactional K-Anonymity
下载PDF
导出
摘要 研究了动态集值属性数据重发布中的隐私保护问题.真实的数据随时间的推移因插入、删除、修改等操作而产生动态变化.更新后数据的重发布将面临攻击者使用历史发布结果对敏感信息揭露的风险.提出了一种面向动态集值属性数据重发布的隐私保护模型,延续使用事务型k-anonymity原则保护记录间的不可区分性,并通过维持记录中敏感元素在更新过程中的多样性和连续性阻止其被揭露.结合局部重编码泛化和隐匿技术降低数据匿名产生的信息损失,进而提出了完整的重发布算法.通过在真实数据集上进行的实验和比较,研究结果表明提出的方法能有效阻止敏感信息的泄露,并降低发布结果的信息损失. Privacy preserving for re-publication of dynamic set-valued data is studied in this paper.In practical applications,data always dynamically change due to inserting,deleting and modifying.The updated data should be re-published and the sensitive information of which will confront the risk of being exposed by adversary using the historical published result.A privacy preserving model is proposed in this paper to protect in-distinguishability of the records by continuing using transactional k-anonymity,and prevent sensitive elements from being exposed by maintaining the diversity and continuity of the sensitive elements in the updating process.A re-publication algorithm is also proposed to reduce information loss of the anonymous result by integrating local recoding generalization with suppression.Real-world datasets are used in the experiment,experimental results and evaluations demonstrate that our approach can effectively prevent privacy leakage and reduce the information loss of publishing result.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第S1期248-256,共9页 Journal of Computer Research and Development
基金 北京市自然科学基金项目(4122007)
关键词 隐私保护 事务型k-anonymity 集值属性数据 动态数据集 重发布 privacy preserving transactional k-anonymity set-valued data dynamic datasets republication
  • 相关文献

参考文献4

二级参考文献90

共引文献263

同被引文献33

  • 1Terrovitis M, Mamoulis N, Kalnis P, et al. Privacy-preser- ving anonymization of set-valued data[J]. Proceedings of the VLDB Endowment, 2008, 1(1):115-125.
  • 2Chen R. Differentially Private Transit Data Publication= A Case Study on the Montreal Transportation System [C]// Proceedings of the 18th ACM SI GKDD international confer- ence on Knowledge Discovery and Data Mining, 2012, Bei- jing. New York: ACM, 2012: 67-89.
  • 3Dwork C, McSherry F Nissim K, et al. Calibrating Noise to Sensitivity in Private Data Analysis[J]. Theory of Cryptog- raphy, 2006,25(4): 201 214.
  • 4DWORK C. Differential privacy[C]//Proceeding of the 33rd International Colloquium on Automata, Languages and Pro- gramming, 2006, Venice Italy. Berlin: Springer, 2006: 1 -12.
  • 5Mcsherry F, Talwar K. Mechanism Design via Differential Privacy[C]/ /Proc of the 48th Annual IEEE Symposium on Foundations of Computer Science, Washington DC= IEEE Computer Society, 2007: 94-103.
  • 6Li Y D, Zhang Z, Winslett M, et al. Compressive Mecha- nism: Utilizing Sparse Representation in differential privacy [C] //Proc of the 10th Annual ACM Workshop on Privacy in the Electronic Society. New York: ACM, 2011:177 -182.
  • 7Acs G, Chen R. Differentially Private Histogram Publishing through Lossy Compression[C]// Proceedings of the llth IEEE International Conference on Data Mining (ICDM), Brussels, Belgium: IEEE, 2012:84-95.
  • 8Xiao X, Tao YF. M-invariance: Towards privacy preserving republication of dynamic datasets. Proc. of ACM SIGMOD International Conference on Management of Data. New York. ACM Press. 2007. 689-700.
  • 9Fung B, Wang K, Fu AWC, et al. Anonymity for continuous data publishing. Proc. of the 11 th International Conference on Extending Database Technology. New York. ACM Press. 2008. 264-275.
  • 10Bu YY, Fu AWC, Wong RCW, et al. Privacy preserving serial data publishing by role composition. Proc. of the VLDB Endowment, 2008, 1(1): 845-856.

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部