期刊文献+

基于M-tree的不等半径覆盖相异多样集求解方法

Dissimilarity and Coverage Diversification with Different Radius based on M-tree
下载PDF
导出
摘要 通过查询结果多样化处理,能够显著提升用户查询体验.过去的研究集中在等半径结果集多样化的无向图求解,而首次研究不等半径下多样集的有向图求解方法.基于结果集的覆盖相异多样集定义及有向图描述,提出多样化结果集的启发算法,并基于M-tree索引结构实现算法的求解.为了提高算法执行效率,提出剪枝等策略.最后,通过实验,从多样化结果集的大小及计算代价两个方面对比分析验证文中提出算法,并得出相关结论. Diversification of search result can significantly enhance the user's query experience,while giving a comprehensive response to the whole information of the search result.Related works about result diversifying focused on computation of undirected graph with equal radius.To the best of our knowledge,this paper was the first one that contributed to the result diversification with different radius.A new,distance radius based dissimilarity and coverage diversity definitions and its directed graph based descriptions were proposed so that it could automatically allocate distance radius for the query object,and heuristics for its approximation were provided.In the end of this paper,efficient implementations of the algorithms based on the prune rule were presented,and experiments evaluating the performance demonstrated the efficiency of the algorithms in two aspects of the size of diverse subset and computational cost.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第S1期290-296,共7页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展计划基金项目(2011AA010106) 国家自然科学基金项目(71071160)
关键词 结果集多样化 不等半径 覆盖 相异 M-tree result diversification different radius coverage dissimilarity M-tree
  • 相关文献

参考文献2

二级参考文献18

  • 1Goffman W.On relevance as a measure[J].Information Storage and Retrieval,1964,2 (3):201-203.
  • 2Bennett P N,Carterette B,Chapelle O,et al.Beyond binary relevance:preferences,diversity,and set-level judg-ments[J].ACM SIGIR Forum,2008,42(2):53-58.
  • 3Radlinski F,Carterette B,Bennett P N,et al.Redundancy,diversity and interdependent document relevance[J].ACM SIGIR Forum,2009,43(2):46-52.
  • 4Carbonell J,Goldstein J.The use of mmr,diversity-based reranking for reordering documents and producing summaries[C] //Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,1998:335-336.
  • 5Zhai Chenxiang,Cohen W W,Lafferty J.Beyond independent relevance:methods and evaluation metrics for subtopic retrieval[C] //Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2003:10-17.
  • 6Gollapudi S,Sharma A.An axiomatic approach for result diversification[C] //Proceedings of the 18th International Conference on World Wide Web.New York:ACM,2009:381-390.
  • 7Zhu Xiaojin,Goldberg A B,Van Gael J,et al.Improving diversity in ranking using absorbing random walks[C] //Proceedings of Human Language Technologies:the Annual Conference of the North American Chapter of the Association for Computational Linguistics.Rochester:NAACL,2007:97-104.
  • 8Swaminathan A,Mathew C,Kirovski D.Essential pages[R].Redmond:Microsoft Research,2008.
  • 9Yue Y,Joachims T.Predicting diverse subsets using structural svms[C] //Proceedings of the 25th International Conference on Machine Learning.New York:ACM,2008:1224-1231.
  • 10Agrawal R,Gollapudi S,Halverson A,et al.Diversifying search results[C] // Proceedings of the Second ACM International Conference on Web Search and Data Mining.New York:ACM,2009:5-14.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部