期刊文献+

KNN和SVM并行结合的算法 被引量:1

KNN and SVM Parallel algorithm
原文传递
导出
摘要 根据话题跟踪的定义和特点,分析了K最近邻(KNN)算法和支持向量机(SVM)算法的优缺点,发现它们的优缺点具有互补的可能性,提出了KNN和SVM并行结合的算法作为话题跟踪算法,设计了话题跟踪实验,实验结果证明了新算法作为话题跟踪算法,考虑了话题跟踪的特点,利用了KNN算法和SVM算法的理论优势而避免了理论的缺陷,处理话题跟踪问题时具有很好的话题跟踪效果. According to the definition and characteristics of topic tracking,the advantages and disadvantages of the K-nearest neighbor(KNN)algorithm and support vector machines(SVM)algorithm were analyzed.It is found that their advantages and disadvantages have the possibility of complementary,proposes parallel with KNN and SVM algorithm as topic tracking algorithm,designs topic tracking experiments,and experimental results prove that the new algorithm as the topic tracking algorithm considers the characteristics of the topic tracking,takes advantage of theoretical advantages of the KNN algorithm and SVM algorithm while avoiding their theoretical defect and has a good topic tracking effect in dealing with the problems of topic Tracking.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第S2期113-116,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 网络文化与数字传播北京市重点实验室开放课题资助项目(ICDD201105 ICDD201205) 国家自然科学基金资助项目(61271304) 北京市教委科技发展计划重点资助项目暨北京市自然科学基金B类重点资助项目(KZ201311232037) 2013年河北省高等学校科学技术研究自筹资金资助项目(Z2013162)
关键词 支持向量机 K最近邻 并行算法 话题跟踪 话题检测 support vector machines K-nearest neighbor parallel algorihm topic tracking topic de-tection
  • 相关文献

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部