期刊文献+

基于纳米操作机器人的石墨烯切割力各向异性研究 被引量:2

Cutting force anisotropy dependence on lattice structures of graphene based on nanorobot
原文传递
导出
摘要 石墨烯的独特之处在于其电学特性与其边缘结构几何构型密切相关,而如何大规模可控地剪裁石墨烯是石墨烯走入实际应用的前提.利用纳米操作机器人技术,从实验上系统研究了石墨烯切割力与切割方向的关系,结果表明石墨烯切割力各向异性,与石墨烯的晶格结构相吻合.这表明在石墨烯加工过程中,实时切割力可作为反馈信息从而实现石墨烯的可控加工. The unique of graphene is that its electrical properties are strongly related to its size, geometry, and edge structures. How to tailor graphene in a controllable way is the premise for real applications. This work systematically investigates the relationship between cutting forces and cutting directions based on the nanorobot. The results show that the cutting forces of graphene are anisotropy which have a good match with latttice structures. This shows that the real-time cutting forces can be used as feedback information to control the cutting directions during the manufacturing process.
出处 《科学通报》 EI CAS CSCD 北大核心 2013年第S2期181-186,共6页 Chinese Science Bulletin
基金 国家自然科学基金(60904095 51050110445 61175103) 国家高技术研究发展计划(2009AA03Z316) 中国科学院-国家外国专家局创新团队国际合作伙伴计划资助
关键词 石墨烯 纳米操作机器人 切割力各向异性 graphene,nanorobot,cutting force anisotropy
  • 相关文献

参考文献3

二级参考文献70

  • 1Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films.Science,2004,306:666–669.
  • 2Geim A K,Novoselov K S.The rise of graphene.Nat Mater,2007,6:183–191.
  • 3Li X L, Wang X R, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319:1229-1232.
  • 4Wang X R,Ouyang Y J,Li X L,et al.Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors.Phys Rev Lett,2008,100:206803.
  • 5Lin Y M,Dimitrakopoulos C,Jenkins K A,et al.100-GHz transistors from wafer-scale epitaxial graphene.Science,2010,327:662.
  • 6Grosse K L,Bae M H,Lian F,et al.Nanoscale Joule heating,Peltier cooling and current crowding at graphene-metal contacts.Nat Tech,2011,6:287–290.
  • 7Schedin F,Geim A K,Morozov S V,et al.Detection of individual gas molecules adsorbed on graphene.Nat Mater,2007,6:652–655.
  • 8Merchant C A,Healy K,Wanunu M,et al.DNA Translocation through Graphene Nanopores.Nano Lett,2010,10:3163–3167.
  • 9Garaj S,Hubbard W,Reina A,et al.Graphene as a subnanometre trans-electrode membrane.Nature,2010,467:190–193.
  • 10Wang X,Zhi L J,Müllen K.Transparent,conductive graphene electrodes for dye-sensitized solar cells.Nano Lett,2008,8:323–327.

共引文献16

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部