期刊文献+

纳米操作机器人同步追踪电压诱导膜特性改变

Nanorobot synchronously tracking voltage-induced changes of membrane character
原文传递
导出
摘要 细胞膜特性是活细胞研究指标中的一项重要标记物,包括细胞膜杨氏模量、膜表面张力、膜上离子通道机械门控性等多种属性.这些属性在触摸、刺痛等机械力刺激信号介导的感知系统中起着重要的作用.然而,由于缺乏有效的研究工具和手段,现阶段对细胞膜特性的研究还并不广泛、深入.为此,本文将平面膜片钳技术与纳米操作机器人技术相集成,建立了一套能够对细胞施加超微机械力刺激并同步检测细胞电生理信号与物理特性变化的细胞多维信息检测系统.该系统主要包括平面膜片钳、纳米操作机器人与微流控系统3部分,能够实现细胞封接、细胞内液更换和信号采集与处理的自动化操作.利用该综合系统,本文深入研究了不同钳制电压对神经瘤Neuro-2a细胞膜杨氏模量的影响,实验结果表明随着钳制电压的增大,细胞膜杨氏模量逐渐减小.理论分析结果与实验一致. The cell membrane characters including membrane Young's modulus, membrane tension, mechanosensitivity of ion channel et al are important biomarkers in the living cell reseach. These properties have significance in perceptual system mediating by mechanical stimuli like sense touch or pain et al. However, knowledges based on cell membrane characters have been limited due to that there are no efficient research tools. In this paper, a cellular physiological information detect system integrating path-clamp technique and nanorobot technique has been developed which can be used to detect both physiological and physical signals on the cell simultaneously with supplying ultra-micro mechanical stimuli. This system contains a home-designed planar patch clamp module, a nanorobot based on the atomic force microscope(AFM) module and a microfluidic module. With this comprehensive system, an experiment to synchronously track the voltage-induced membrane Young's modulus changes were proposed on the mouse neuroblastoma cell line(Neuro-2a). The experimental results show that the membrane gets softer when the clamping voltage goes up. Finally, a theoretical derivation was deduced to explain the experimental phenomenon.
出处 《科学通报》 EI CAS CSCD 北大核心 2013年第S2期187-193,共7页 Chinese Science Bulletin
基金 国家自然科学基金(61175103,61327014) 中国科学院装备研制项目 中国科学院-国家外国专家局创新团队国际合作伙伴计划资助
关键词 平面膜片钳 纳米操作机器人 杨氏模量 钳制电压 planar patch clamp,nanorobot,Young's modulus,clamping voltage
  • 相关文献

参考文献15

二级参考文献122

  • 1鲁哲学,张志凌,庞代文.原子力显微镜技术及其在细胞生物学中的应用[J].科学通报,2005,50(12):1161-1166. 被引量:8
  • 2Dufrene Y F. Atomic force microscopy and chemical force microscopy of microbial cells. Nat Protoc, 2008, 3:1132-1138.
  • 3Franz C M, Puech P H. Atomic force microscopy: A versatile tool for studying cell morphology, adhesion and mechanics. Cell Mole Bioeng, 2008, 1:289-300.
  • 4Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep, 2005, 59:1-152.
  • 5Costa K D. Single-cell elastography: Probing for disease with the atomic force microscope. Dis Markers, 2003, 19:139-154.
  • 6Lekka M, Laidler P. Applicability of AFM in cancer detection. Nat Nanotechnol, 2009, 4:72.
  • 7Stolz M, Raiteri R, Daniels A U, et al. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J, 2004, 86:3269-3283.
  • 8Fletcher D A, Mullins R D. Cell mechanics and the cytoskeleton. Nature, 2010, 463:485-492.
  • 9Pelling A E, Li S, Shi W, et al. Nanoscale visualization and characterization of Myxococcus xanthus ceils with atomic force microscopy. Proc Natl Acad Sci USA, 2005, 102:6484-6489.
  • 10Binning G, Quate C F, Gerber C. Atomic force microscope. Phys Rev Lett, 1986, 56:930-933.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部