期刊文献+

Mineral Chemistry of Scheelite as An Indicator of Multi-stage Fluid Evolution Associated with the Riviera W-REE-Mo Deposit South Africa

Mineral Chemistry of Scheelite as An Indicator of Multi-stage Fluid Evolution Associated with the Riviera W-REE-Mo Deposit South Africa
下载PDF
导出
摘要 The Neoproterozoic Riviera W-REE-Mo deposit is one of the largest unmined tungsten resources in the world and is associated with pervasively altered A-type granites of the Neoproterozoic Cape Granite Suite Western Cape, South Africa. The present study investigated the mineral chemistry of scheelite, the principal ore mineral with the aim to record the variation of solid solution molybdenum for geometallurgical purposes and also as an indicator of changing redox conditions of the mineralizing hydrothermal fluids. Methodology included UV-fluorescence studies and micro-analyses by LA-ICP-MS. Results have shown that at least four phases of scheelite are hosted by the endoskarn zone, potassic alteration zone and various quartz-carbonate veins. This reflects hydrothermal fluid evolution from early stage reduced to late stage, vein associated and more oxidized. The molybdenum content of the dominant early phase scheelite is low and renders the deposit amenable to low penalty mineral recovery. The Neoproterozoic Riviera W-REE-Mo deposit is one of the largest unmined tungsten resources in the world and is associated with pervasively altered A-type granites of the Neoproterozoic Cape Granite Suite Western Cape, South Africa. The present study investigated the mineral chemistry of scheelite, the principal ore mineral with the aim to record the variation of solid solution molybdenum for geometallurgical purposes and also as an indicator of changing redox conditions of the mineralizing hydrothermal fluids. Methodology included UV-fluorescence studies and micro-analyses by LA-ICP-MS. Results have shown that at least four phases of scheelite are hosted by the endoskarn zone, potassic alteration zone and various quartz-carbonate veins. This reflects hydrothermal fluid evolution from early stage reduced to late stage, vein associated and more oxidized. The molybdenum content of the dominant early phase scheelite is low and renders the deposit amenable to low penalty mineral recovery.
出处 《矿物学报》 CAS CSCD 北大核心 2013年第S1期3-3,共1页 Acta Mineralogica Sinica
关键词 mineral chemistry MULTI-STAGE fluid evolution SCHEELITE the Riviera W-REE-Mo DEPOSIT mineral chemistry multi-stage fluid evolution scheelite the Riviera W-REE-Mo deposit
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部